
May 6th, 1999

Restructuring SDL to
Improve Readability

Ole Henrik Dahle

Institutt For Informatikk, Universitetet i Oslo

Restructuring SDL to improve readability I

Preface

This thesis is part of a Cand. Scient. (Master of Science) degree at the
Institute For Informatics, University of Oslo. The theoretical studies were
done in 1998, and the programming and writing was done during the fall
and winter of 1998/99. The programming and experiments were done at
Ericsson NorARC (Norway Applied Research Center).

I would especially like to thank my supervisor, Øystein Haugen, for
being a great help in my work. Not only has he guided and encouraged
me, but also helped me with many practical things. I would like to thank
all the people at Ericsson NorARC for letting me work there. I would
also like to thank Hans Steller and the people at Ericsson’s PSTN (Public
Switched Telephone Network) group for letting me participate in their
TTM3 project.

II Restructuring SDL to improve readability

Restructuring SDL to improve readability III

Contents
Preface . I
Abstract . VII
Executive summary . VIII
About the thesis . X
Motivation . X
Objective . X
Organization . XI

Chapter 1 Experience from Software Maintenance. . . . 1
The task . 1
The first iteration . 4
The second iteration . 5
The third iteration . 6
Some typical maintenance problems. 8
Lack of planning . 8
Limited understanding of the system . 8
Unstructured execution . 9

Chapter 2 An Introduction to Reengineering 11
Background . 11
History . 13
Areas of research . 15
Reverse engineering / design recovery . 17
Program understanding . 18
Restructuring / transformation. 19
Methodologies for reengineering . 20
Categories of reengineering projects . 22
Porting / recycling . 22
Renovation. 23
Redevelopment . 23

Chapter 3 The Basics of Program Transformation 25
General . 25
Downwards transformation . 26
Upwards transformation . 27
Optimizing (horizontal) transformation . 27
The four levels of program transformation . 29
Level 1: Text-Level Transformation . 29
Level 2: Syntactic-Level Transformation . 29
Level 3: Semantic-Level Transformation . 30
Level 4: Concept-Level Transformation . 30

IV Restructuring SDL to improve readability

Transformational development . 31
Problems with restructuring / Program transformation 32

Chapter 4 Restructuring SDL . 35
Impact on quality. 35
Restructuring vs. pretty printing . 37
An introduction to SDL. 37
Development models . 43
Transformational development . 43
Reengineering . 44
Maintenance . 45
Other efforts. 45
Principles . 47
Rules with correctable violations: . 49
Rules with detectable violations:. 49
Non-detectable violations . 50
Detectable vs. correctable violations. 51

Chapter 5 The Experiment. 53
Choice of methods. 53
Design of the program. 54
Implementation of the rules. 56
State and nextstate . 57
Signal parameters . 59
Source and destination. 60
Decision layout . 61
Control flow. 62
Meaningful names . 62
Connections . 62
Correctness of the rules . 66
Repeated application . 67

Chapter 6 The Test Case . 71
Background . 71
New problems and solutions . 72
Invisible joins . 72
Overflow . 74
Misplaced state symbols . 75
Long variable and signal names . 76
Empty pages after expansion. 77
Still unsolved problems . 77
Misplaced comments . 77
Overflow inside decisions . 78

Restructuring SDL to improve readability V

Response from the T.30 team . 79

Chapter 7 Results & Further Work. 81
Results . 81
The dictionary . 81
The literature study . 81
Connecting transformation to pretty printing . 82
The rules . 82
The program . 82
The Test Case -Improvement in readability . 83
Further work . 83
Empirical testing of SDL readability. 83
Improve transformer.pl . 84
Spread my results to the industry . 85

Chapter 8 Conclusion . 87
Goal accomplishment . 87
Lessons learned . 88

Chapter 9 References . 89

Appendix A Dictionary . 95

Appendix B SDL: Toy Example. 107

Appendix C SDL: Process Phase (Original) 111

Appendix D SDL: Process Phase (Transformed) 127

Appendix E Source Code: transformer.pl. 157

VI Restructuring SDL to improve readability

Restructuring SDL to improve readability VII

Abstract

This thesis shows how to use techniques and theory from program
transformation to improve readability of SDL (Specification and Descrip-
tion Language) diagrams. An introduction to software reengineering in
general and restructuring and transformation in particular is provided to
establish the relationship between transformation and pretty printing. I
then introduce a set of rules for readable SDL. To demonstrate the appli-
cability of these rules, I have created a prototype program that enforces
the rules. A real world example, from a project in Ericsson, is fed through
the program and the results are evaluated.

Keywords: Restructuring, program transformation, pretty printing, SDL,
readability

VIII Restructuring SDL to improve readability

Executive summary
Program transformation is the process of rewriting one program into
another using a set of transformational rules. A transformational rule has
a left-side pattern and a right-side pattern, and possibly some conditions.
When the left-side pattern matches a string in the source program and the
conditions are satisfied, the string is substituted with the instantiated
right-side pattern.

Restructuring is transformation of a description to make it easier to
understand or less susceptible of errors when future changes are made
[Arnold89].

In this thesis, the theories of program transformation and restructuring
are used to improve readability of SDL (Specification and Description
Language) diagrams. The rules used are taken from Bræk and Haugen’s
“Engineering real time systems” [Bræk93], with some additions by me.
The majority of the rules concern only diagram layout issues, and do not
alter the semantics of the SDL. The notable exception is the rule that dis-
courages use of connections, the “GOTO of SDL”. If the user allows it,
connections are expanded or turned into procedures.

The major rules I selected are as follows:

• Only one state per page

• Source / destination should be specified on all signals

• Avoid connections, use procedures instead

• Branch on signals, not decisions

• Use meaningful names, not shorter than five letters

I have made a prototype program in Perl that implements these rules. The
program works on SDL descriptions in PR/CIF (Z.106) format, which
can be read and written by most SDL tools. The program worked satis-
factory with Telelogic’s SDT, Cinderella, and Verilog’s Geode.

Restructuring SDL to improve readability IX

The program was tested on a real world example, an SDL process from a
project in Ericsson.The results were positive, and confirmed that program
transformation is a viable option for improving readability.

X Restructuring SDL to improve readability

About the thesis

Motivation

When I started on my Cand. Scient. degree, I planned to work on code
reuse. My preliminary question was “how and why does old code hinder
adoption of new techniques?” To study this, I worked at NorARC and
learned their development methodology. I also participated in a redevel-
opment project using SDL for design. However, this work did not give
me enough background data to say anything meaningful about old code
and adoption of new techniques.

On the other hand, through my work I got involved with writing Perl
scripts to reformat text files. During my study of the reengineering litera-
ture, I got interested in program transformation, and thought Perl could
be a good tool for this. When I saw how SDL was written as text files in
the PR/CIF format, I realized that in this format, SDL could be trans-
formed by a perl script without much trouble.

The step of preparing reverse engineered or automatically generated SDL
for forward engineering had not been looked much into, in Ericsson or in
the literature. This provided me with an opportunity to use my perl skills
to try out transformational techniques to improve readability, something
that had not been done on SDL before.

Objective

The objective of this thesis is to show that it is feasible to automatically
restructure SDL to achieve better readability, and to support this activity
with theory from program transformation.

I will try to meet this objective in four phases:

1 I will present the basics of reengineering and program transformation,
and link it to automatic restructuring.

2 I will present a collection of rules for readable SDL that can be applied
automatically

Restructuring SDL to improve readability XI

3 I will construct a program that uses these rules on SDL diagrams

4 I will test my program on a real world example

Organization

Chapter 1 is an account of my own experience with software mainte-
nance. The chapter is meant to introduce the reader to the problems of
maintenance.

Chapter 2 contains a introduction to the field of reengineering. The goal
of this chapter is to familiarize the reader with the jargon of reengineer-
ing and show how reengineering can address the problems presented in
the first chapter.

Chapter 3 presents the basic facts of program transformation, and
together with chapter 2 fills out the theoretical background for the thesis.

Chapter 4 presents the rules for readable SDL and how restructuring of
SDL can fit into different development models.

Chapter 5 describes the implementation of the prototype program. This is
done so that the reader can see how the transformational theory is
applied, and how the rules can be implemented.

Chapter 6 describes the experiences I made when I used the program on a
real world example.

Chapter 7 sums up the results, and in Chapter 8 I present my own conclu-
sion.

Appendix A contains a dictionary for the thesis. It includes the defini-
tions of the terms used in the thesis. The definitions are not repeated in
full in the text, so the reader is encouraged to look up terms in the dic-
tionary.

XII Restructuring SDL to improve readability

Restructuring SDL to improve readability 1

C H A P T E R

1
CHAPTER1EXPERIENCE FROM

SOFTWARE MAINTENANCE

This thesis deals with reengineering and restructuring as an aid to soft-
ware maintenance. To help the reader understand some of the problems
associated with maintenance, this chapter describes a maintenance job I
did and the problems I encountered.

The task

In October 1998, I was given the task of altering a Perl script to do some
new things. Although the job was rather small, (the script was only about
200 lines, and the job took about 20 work hours) I think it can illustrate
some of the common problems in maintenance.

The script was written by Nils Faltin at the university of Erlangen, Ger-
many. I had no contact with him, and there was no written documenta-
tion, so I had only the source code (with some comments) to go by.

The purpose of the script was to extract BNF rules1 from an ASCII docu-
ment and make a cross-referenced HTML index of the rules. The original
version was divided in two parts. The first script,extract.perl , would

1. The Backus-Naur Form (See definition in dictionary, appendix A).

Experience from Software Maintenance

2 Restructuring SDL to improve readability

scan through a text file and write all the rules found to a file called
rules.bnf . Then the second script,indexbnf.perl , would read the rules
from the file, build a table of which non-terminals the rules used (from
here on called the used-by table), and write a hyperlinked list of all the
rules to a HTML file. The reason for this division was to let the user cor-
rect the rules inrules.bnf before the list was generated.

Figure 1.1 Source and products of the original scripts

The customer for this job thought the original script was good, but
wanted to have the hyperlinks put into the document itself, instead of in a
separate file. The source document was to be in HTML, not ASCII. The
customer also wanted the two scripts joined into one, because he thought
it would be more user friendly with only one program. If the first part
misinterpreted the rules, he would rather alter the source document than
to rework the intermediate results inrules.bnf . The script was called
linker.pl , because its primary function was to create links inside the
HTML document.

Figure 1.2 Source and products of the new script

ASCII file Index of rules (HTML)

extract.perl

rules.bnf

indexbnf.perl

Index of rules (HTML)

linker.pl

rules.bnfHTML document

HTML doc. with links

The task

Restructuring SDL to improve readability 3

This made the task a case of both adaptive and perfective maintenance.
(See dictionary for definitions). On one hand, the mission was to adjust
the script to a new environment (HTML instead of ASCII). On the other
hand, the script would be extended with a new feature, inserting links
into the source document.

The document in focus was an ITU (International Telecommunications
Union) specification of the MSC (Message Sequence Chart) language,
with a couple of pages of text at the start, and then the specification of
MSC in BNF rules.

Being a little bit naive, I thought I could make the script fullfill the new
requirements with just minor modifications. I did not really understand
the part of the script that read the rules fromrules.bnf and created the
used-by table, but instead of using a lot of time to understand it, I decided
to use it as a black box.

The work with the script went through three major iterations and approx-
imately ten minor versions, and was shown to the customer five or six
times. The reason for the many deliverances was that altering the script
was done quite quickly, so a prototyping approach was possible. The
requirements for the script changed a little from version to version, as the
customer and I discovered what was possible and favourable. This made
the script go through a bit of evolution, and not surprisingly, the evolution
followed Lehman’s law of increasing complexity (see Lehman’s laws on
page 13).

The combined length of the original two scripts was 208 lines, including
the printing of a large header. The first version of my script was 177 lines
long, the final 299 lines. The cyclomatic complexity2of the original script
was 22. The first version of the new script had a cyclomatic complexity

2.Cyclomatic complexity is a measure of the number of independent paths through
a program, devised by McCabe [McCabe76]. If a program is drawn as a graph with
the statements as nodes and decisions as the edges between them, the cyclomatic
complexity is: CC = Number(edges) - Number(nodes) +1. If there are no GOTOs in
the program, the cyclomatic complexity is simply the number of conditions +1.

Experience from Software Maintenance

4 Restructuring SDL to improve readability

of 20, but in the final version it had grown to 38. The increase was mainly
caused by a growing number of nested if-statements, taking care of more
and more special cases.

The first iteration

To begin with, the script handled all lines containing ‘::=’ as BNF rules.
This was not acceptable, as the ‘::=’ expression was used in some textual
areas of the document as well. To get around this, I added an extra test,
checking if the line began with ‘<P>< name-of-rule > ’, since all the
BNF rules were written this way.

The original script expected the non-terminals to be enclosed with less-
than and greater-than signs (‘<‘ and ‘>’). In HTML, all the tags are
enclosed with these signs, and less-than and greater-than signs in the text
are coded as ‘<’ and ‘>’. To make the BNF rules appear correctly in
rules.bnf , I stripped all the HTML tags from the rules found in the
source document, and replaced ‘<’ and ‘>’ with ‘<‘ and ‘>’ before
the rules were written to the file. This added a couple of lines to the script
to do the stripping. As a side effect all formatting of the text in the rules
was lost.

This was irritating, as boldface and underlined characters were used in
the rules to convey special meaning. For example, if the words before
“name” or “identifier” was underlined, they should not be linked to. It
looked like this:
<shared instance list> ::= < instance name> [, <shared instance list>]

The original script would create links to everything between ‘<‘ and ‘>’,
but a link to “instance name” would be wrong. I created a temporary
solution to this by replacing the underline-tag with a pound sign during
tag stripping, and then ignoring terms with pound signs in the linking
phase.

The stripping of HTML tags also caused problems for graphical rules.
These rules had to include a HTML tag to show the picture of the sym-
bol. In the first version, the tag was considered a rule by the script, which
produced a lot of nonsense. To fix this, I had to create a hack (a fix that

The second iteration

Restructuring SDL to improve readability 5

does the right thing, but breaks some rules doing it, and often is difficult
to maintain). If the script detected the string “IMG SRC” in the rule, it
knew it was a graphical rule, and made a hyperlink only for the left term
of the rule.

If, on some later occasion, a BNF-rule contained the words “IMG SRC”,
the rule would be considered a graphical rule instead of a textual. This
error would probably be difficult to figure out for another programmer
doing maintenance on the script.

The second iteration

When the customer tested the first version, he was basically satisfied with
the script, but pointed out the problem with ‘identifier’ and ‘name’ state-
ments. After browsing the HTML document produced by the script, he
also found it awkward to have the index of the rules in one document and
the definitions in another.

The customer also wanted a BNF grammar describing the allowed format
of the input to the script. This would make it easier to rework other docu-
ments to work with the script.

In the second iteration of the script I experimented with different ways to
show the index of the rules and the definitions at the screen simultane-
ously. First I made the script write an index of all the rules at the end of
the document. Then I tried having the definitions and index in two differ-
ent windows, but neither solutions worked very well for the customer.

To try to remedy the ‘identifier/name’ problem, I had to move the under-
lined words outside the ‘<‘ and ‘>’ signs, and then let the linking go as
usual. A line that originally looked like:
<shared instance list> ::= < instance name> [, <shared instance list>]

was changed to:
<shared instance list> ::= instance <name> [, <shared instance list>]

with the correct link to the definition of ‘name’. I thought it was a good
solution, but apparently it broke the rules of BNF, and the customer did
not like it.

Experience from Software Maintenance

6 Restructuring SDL to improve readability

This version also included a BNF grammar of the allowed input, but
since it was my first attempt to describe anything in BNF, it had some
shortcomings.

As the recognition rate on the rules approached 100 per cent, I noticed
that there were actually more substitutions than rules. That would have to
mean that some terms were defined more than once. Since the associative
array that stored the rules was indexed by the name of the left terms, a
second definition of a term would simply overwrite the first one.

After examining the document closely, I found that in the beginning of
the text there were some examples with left terms identical to real rules,
but with simplified right sides. When the script went through the docu-
ment, the right sides of the examples were substituted with the right sides
of the real rules, destroying the examples. This problem had to be solved
to make the script usable.

The third iteration

The goal of this iteration was to stop the experimentation, weed out the
bugs, and produce a version that recognized all the BNF-rules, and with-
out ruining anything else in the document.

The prime concern in this respect was of course the problem with the
examples. Multiple definitions of a term is against the Backus-Naur
Form, but I could not force the author of the document to use other exam-
ples. I had to find a way of identifying the examples and ignore them. The
solution I came up with was simple, but brutal: Until the script read the
words “concrete textual grammar”, it would not try to recognize any
BNF-rules. This did the trick, since this phrase was used only directly
before the rules. It worked fine on the document at hand, but obviously
this was a terrible hack, and there is no guarantee that it will work on any
other document.

At the time of the third iteration, I had got quite fed up with the stripping
of HTML tags and the side effects it created. I gave up on the black box
programming and read the code that creates the used-by table thoroughly.

The third iteration

Restructuring SDL to improve readability 7

As it turned out, all I had to change was the regular expression that iden-
tified the terms in the rules. Instead of demanding that terms should be
enclosed in less-than and greater-than signs, I made the expression accept
terms enclosed by ‘<’ and ‘>’. In a flash, the need for stripping
HTML tags was gone, and the script worked a whole lot better.

In my third attempt at making the results display nicely, I put the index
and the definitions in two frames within the same window, in the com-
mon menu/content style. This was OK with the customer, and the display
was not changed any more times.

The script was accompanied by the second version of the BNF grammar
for allowed input. It looked like the following:

<document> ::= (<text> | <production>)*
<text> ::= <startline> <.>* <endline>
<production> ::= <leftside> <rightside>
<leftside> ::= <startline> ‘<P>’ <term> < >+ ‘::=
’ <endline>
<rightside> ::= (<.>* | <term> | <endline> <startline>)* <endse-
quence>
<endsequence> ::= ‘</P>’ <endline>
<startline> ::= the start of a line
<endline> ::= the end of a line, the newline character \n
<term> ::= < <a>* >

<.> ::= any character
<a> ::= an alfanumeric character, or ‘-’
< > ::= a blank
‘ means a quote - the text inside ‘s has no special meaning
+ means zero or one time
* means zero or more times

As this described the input reasonably well, it was accepted by the cus-
tomer.

After the second version of this iteration, the script was declared “good
enough” by the customer, and the document produced by the script was
distributed to the group of persons that also had received the source docu-
ment. The response to the product was positive, but I’m afraid that the
new version of the script is considerably less maintainable than the origi-
nal.

Experience from Software Maintenance

8 Restructuring SDL to improve readability

Some typical maintenance problems

This relatively small maintenance task was definitely a learning experi-
ence for me. I made a lot of basic mistakes that I’ve only read about and
never thought I would do in practice. The most basic mistake was to not
assess how the new environment (HTML input instead of ASCII) could
create problems for the script.

My problems seem to correspond, to some degree, to the common prob-
lems in maintenance. In maintenance environments, there is typically a
large backlog of change and enhancement requests. There is a constant
pressure to meet as many as possible of these request with each new
release of the software.

Lack of planning

When there is little time available to deal with each request, it is only
human to cut down on the efforts that have small short term conse-
quences. Planning development and evaluating future effects of the
change is easy to cut down on. This lack of planning also happened to
me, but probably more out of laziness than hurry.

Limited understanding of the system

The time spent reading and understanding the code is also naturally to cut
to a minimum. The maintainer will, if in a hurry, study the code until he/
she knows how to implement the change, no longer. In my little project,
this had grave consequences, as most problems arised from the part of the
code I did not read carefully enough.

My attempt at black box-programming undoubtedly made the script more
complex and buggy. During the three iterations, the script grew in size
from 177 to 299 lines, despite that the functionality did not change much.

Some typical maintenance problems

Restructuring SDL to improve readability 9

Unstructured execution

Generally, the process would have improved a lot with more structured
execution. Because the task always seemed “almost finished”, I adopted
more and more of a “code and fix” development model. Especially in the
end, when I was running out of time, I did not care too much if my code
would be reusable or maintainable. I just wanted the script to work, no
matter which hacks I had to create.

When the development time is short, full-fledged development models
with multiple stages seem like too much overhead for the maintainer. A
solution is found quicker with the “code and fix” approach. All this leads
to the complex, bug-ridden, poorly documented systems predicted by
Lehman’s laws.

My problems, and perhaps most maintenance problems, seems to stem
from extending and altering programs little by little, without seeing the
greater picture. If the maintainer took a step back, and analysed the prob-
lem from the beginning, perhaps the solutions could become more con-
sistent and robust. An activity that tries to do this is reengineering.

Experience from Software Maintenance

10 Restructuring SDL to improve readability

Restructuring SDL to improve readability 11

C H A P T E R

2
CHAPTER2AN INTRODUCTION TO

REENGINEERING

Background

As described in the previous chapter, hastily performed maintenance usu-
ally degrades the quality of software. If anything but trivial change is
required, the design of the system should be rethought, and the system
rebuilt to fit the new requirements. But to throw away the systems and
develop new ones may not be a viable option. This will invariably cost a
lot of money for the organization, and the time required to develop new
systems from scratch may be too long.

A possible way of accomplishing dramatic change for less-than-dramatic
expenses is software reengineering. The essential difference between
normal maintenance and reengineering is that reengineering takes a step
back and analyses the system over again. Maintenance is concerned with
making a fix work, whereas reengineering is concerned with what the
systemreally should do, and how.

Reengineering is the process of understanding and altering existing com-
puter systems. (See Appendix A for a more precise definition.) Reengi-
neering usually involves some kind of reverse engineering, where
information of higher levels of abstraction is extracted from the imple-
mentation of the system at hand. This information is then the basis for the

An Introduction to Reengineering

12 Restructuring SDL to improve readability

further steps of the reengineering process. The information can be
restructured to clean up complex and messy systems, or can be altered to
incorporate new functionality. Then a new implementation is made from
the information. This forward engineering step is done as in normal soft-
ware development.

With the increasing number of legacy systems around, reengineering is
becoming an option to consider for more and more organizations.

According to Robert S. Arnold, there are at least seven reasons why reen-
gineering is important [Arnold93]:

1 Reengineering can help reduce an organization’s evolution risk

2 Reengineering can help an organization recoup its investment in
software

3 Reengineering can make software easier to change

4 Reengineering is big business

5 Reengineering capability extends CASE tools

6 Reengineering is a catalyst for automating software maintenance

7 Reengineering is a catalyst for applying Artificial Intelligence (AI)
techniques to solve software engineering problems

In this paper, we will look at reengineering from a maintenance point of
view, and from this perspective point number one, three and six will be
most interesting for us.

Point one: When a organization’s reengineering practice matures, reengi-
neering will be a less risky path for evolution than new development or
perhaps even normal maintenance. New development is often expensive
and uncertain. Normal maintenance, unless carefully carried out, tend to
make the software more complex and less reliable.

Point three: Reengineering can help the maintenance programmer under-
stand the software more quickly. Also, the alterations can be done at
design level instead of in the source code.

History

Restructuring SDL to improve readability 13

Point six: Reengineering tools can become largely automatic in the
future. With good tools for program analysis, design recovery, and
code generation, the maintenance programmer can work on informative
abstractions of the system. This brings the vision of automatic program-
ming to maintenance programming: The developer should be able to
decide what the program should do, and then the implementation will be
generated automatically.

History
The art of reengineering has existed as long as the art of software devel-
opment. There has always been a need for reversing the steps of develop-
ment and do things over again, but this has not been considered a field of
its own. In fact, the word “reengineering” was not widely used before the
end of the 1980s.

In 1980, Manny Lehman published his five laws of software evolution
[Lehman80]:

1 Continuing change
A program undergoes continual change or becomes progressively less
useful.

2 Increasing complexity
As an evolving program is continually changed, its structure
deteriorates.

3 Fundamental law of program evolution
Program evolution is self-regulating, with statistically determinable
trends and invariances.

4 Conservation of organizational stability (invariant work rate)
During the active life of a program, the global activity rate in a
programming project is statistically invariant.

5 Conservation of familiarity (perceived complexity)
The content of an evolving program’s successive releases is
statistically invariant.

An Introduction to Reengineering

14 Restructuring SDL to improve readability

These laws are almost considered “the natural laws” of software mainte-
nance, and are the fundamentals of the vocabulary used in software main-
tenance research.

The first and second laws are especially interesting for software reengi-
neering. The first law says that systems will never be complete, that they
will always need to change and evolve as long as they are used. Therefore
systems should be made with evolution in mind. It is foolish to expect
that a program will not need changes, no matter how perfect it fit the
specification on the day it was released.

The second law tells us that, as they evolve, large systems grow more and
more complex. The complexity may increase because problems are cor-
rected in an ad-hoc manner, without trying to make the changes consist-
ent with the rest of the system. Another reason may be that the
maintainers do not fully understand the program they are changing
(because of poor documentation in the code and on paper). Therefore
they add code to work around problems in the original code instead of
attacking the problem’s root. The challenge for reengineering is to break
this law, at least for short periods of time, so that the complexity in old
systems can be reduced, and the life of the system lengthened. Shari
Lawrence Pfleeger discusses the rest of Lehman’s laws in her article “The
Nature of System Change” [Pfeelger98].

Since reengineering is often used in software maintenance, reengineering
research was long considered a part of the maintenance research field.
Maintenance journals and conferences have often presented good works
on reengineering. The “Conference on Software maintenance”, which
has been held since 1984, has had sessions on reengineering for reuse,
restructuring and such. The “Journal of Software Maintenance: Research
and Practice”, which has been published since 1989, also has many good
articles on reengineering.

In the second half of the eighties, there was a growing recognition of
reengineering as a research field in its own right. The word “reengineer-
ing” began to be widely used, probably influenced by the buzz around
Business Process Reengineering. Personally, I consider January 1990 to

Areas of research

Restructuring SDL to improve readability 15

be the birth date of software reengineering as a area of its own. At that
time the journal “IEEE Software” published a special issue concerning
reengineering. The issue contained 6 articles about reengineering, some
of them among the most referenced articles in the field.

Especially important was Chikofsky and Cross’ article “Reverse Engi-
neering and Design Recovery: A Taxonomy” [Chikofsky90]. The article
proposed definitions on most of the terminology of reengineering, and
laid the groundwork for the literature about the subject. Although it has
not been officially endorsed as a glossary, it is commonly accepted as the
authoritative definitions of terms, and most works follows its guidelines
for the use of the terms.

During the nineties, the community has consolidated. A lot of articles and
books have been published, and different forums has been established. In
1993, Robert S. Arnold published the book “Software Reengineering”
[Arnold93]. The book contains a collection of important articles from the
different areas of research, with introduction to reengineering and the
specific areas by Arnold. The most important meeting places for the reen-
gineering community is the “Reengineering Forum” conference, which
has been held since 1993, and the “Conference on Reverse Engineering”,
which was first held in 1994.

Areas of research
The topics of the reengineering research have always mirrored the topics
of the development community. A typical topic to discuss in articles and
at conferences is how to modernize programs to fit the programming par-
adigm of the time.

In the 60s and 70s, transforming unstructured programs into structured
ones was an important issue. Already in 1966, Böhm and Jaccopini wrote
an article on structuring program flow diagrams [Böhm66].

From the beginning of the 1980s, the interest in reengineering COBOL
programs arised. Large numbers of sizeable COBOL systems had been
made in the late 60s and 70s, and was not according to the structured pro-

An Introduction to Reengineering

16 Restructuring SDL to improve readability

gramming paradigm. This is still a hot topic, and it seems like the reengi-
neering of COBOL will peak in 1999, with the preparation of these
systems for the millennium change.

From the mid-eighties, there has been an interest in migrating applica-
tions from mainframes to client/server architectures. The trend was
started by the technological development; workstations and PCs took
over for dumb terminals. With so much processing power at the desktops,
it was no longer cost-effective for applications to run only on the servers.
Ganti and Brayman [Ganti95] emphasize that business processes should
also be reconsidered when migrating to client/server solutions. This
shows that software reengineering can be an integral part of Business
Process Reengineering (BPR).

From the late eighties and into the 1990s, a popular topic of discussion
and research has been the reengineering of functional oriented programs
into object oriented ones. Ivar Jacobson gives a method for reengineering
parts of a system into object oriented modules in his article from
OOPSLA 91 [Jacobson91]. His solution is to first create an object ori-
ented domain model by design recovery and domain analysis. Then he
reimplements selected parts of the system with OO technology. In addi-
tion, he creates OO wrappers so that the interfaces between the old and
new parts are completely object oriented. By using this method, Jacobson
argues, it will be possible to gradually modernize a legacy system to a
object oriented one.

One of the newest trends in reengineering is patterns. Because of the
great interest the software development community has shown to pat-
terns, researches have wondered what patterns could contribute to reengi-
neering. Stevens and Pooley [Stevens98] argues that reengineering
patterns could help (re)developers choose a line of action for their
projects, but that patterns cannot replace a methodology. In this sense,
reengineering patterns differ from design patterns in that they do not
present typical (re)design solutions, but patterns of process and project
plans.

Areas of research

Restructuring SDL to improve readability 17

Proposed reengineering patterns are “Componentizing by building a
facade”, “Changing interfaces in a client-friendly way” [Stevens98],
“Type check elimination in clients”, and “Architectural extraction using
prototyping” [FAMOOS98].

Besides the always ongoing topic of modernizing old systems to the lat-
est buzz-word technology, there are four main areas of research in reengi-
neering:

• Reverse engineering / Design recovery

• Program understanding

• Restructuring / transformation

• Methodologies for reengineering

Reverse engineering / design recovery
Reverse engineering is the process of analysing a computer system to
create representations of it on a higher level of abstraction. Because this
in some way is opposite of normal software development, it is called
reverse engineering.

The principles of reverse engineering are clear enough in theory; group
together constructs and replace them with a corresponding construct of
higher abstraction. But this is not so simple in practice. Often one seeks
to reconstruct a design from source code, and a good design includes the
thoughts behind the decisions, but this is lost in the source code. In fact,
Corbi stated that “automatically recapturing design from source code is
considered infeasible” [Corbi90]. But despite such pessimistic predic-
tions, a lot of work is being done in developing new approaches and pro-
grams for reverse engineering.

For example, Sneed and Jandrasics describes a tool that reverse engineers
COBOL-74 source code into a higher level functional description in their
paper “Software Recycling” [Sneed87].

REFINE, by Reasoning Systems Inc., is a reengineering package that can
create object oriented databases from source code in a range of lan-

An Introduction to Reengineering

18 Restructuring SDL to improve readability

guages. Queries can then be made to the database to produce different
views on the system [Kozaczynski92].

The Maintainer’s Apprentice is a toolset that can produce specifications
from assembly language code. The specifications made by the program
are functionally oriented, with a syntax similar to Pascal. It was made by
REFORM, a project involving IBM, in the beginning of the 1990s. Lano
and Haughton [Lano94] lists a full dozen of other tools for reverse engi-
neering and design recovery.

Design recovery is the process of creating design descriptions for a sys-
tem. This often includes reverse engineering of source code to design
descriptions. To create good descriptions of the system, one also needs
other sources of information, such as documentation and domain experts
[Biggerstaff89]. The (human) domain expert is of course the most valua-
ble source, since he/she has both formal and informal knowledge about
the domain and the system. A domain expert knows the reasons for many
development decisions, whereas a reverse engineering tool (at best) only
can recognize these decisions.

Program understanding
In the area of program understanding researchers try to find out what pro-
grammers do to understand programs, how they should do it, and how
computers can understand programs. Clearly, this borders on the area of
reverse engineering, but the program understanding community is gener-
ally more focused towards people, and incorporate sciences such as cong-
nitive psychology in their work.

According to Corbi, there are three ways of learning about a program
[Corbi90]:

• Read about it (from documentation)

• Read it (static analysis, source code reading)

• Run it (dynamic analysis)

Areas of research

Restructuring SDL to improve readability 19

Much of the effort in this area has been aimed at determining how pro-
grammers understand a program from source code. There are three some-
what conflicting theories on the matter:

• The “bottom up” theory
By reading the code, the programmer recognizes solution patterns and
creates abstractions of the program as he/she goes. First, low-level pat-
terns, such as “repeat until” or “step through an array” are recognized.
Then, these patterns are put together to form higher-level algorithms,
for example “bubble sort” or “quick sort”.

• The “top down” theory
First, the programmer is told (or reads) what kind of a program is at
hand, for example a complier. Then the programmer identifies mod-
ules and sub-modules in the program, such as the parser and the lexi-
cal analyser. Later he/she reads the code more closely and identifies
the algorithms used in the different parts.

• The opportunistic theory
The programmer does some bottom up, some top down recognition of
the program, as different clues present themselves. The programmer
searches for structures matching his/her general idea of the program,
as well as making abstractions of low-level patterns.

To understand programs in a bottom up manner is difficult if the solution
patterns are scattered around in the code [Letovsky86]. If different solu-
tion patterns are intertwined, or the program flow is not very sequential
with respect to the source code, the patterns are split up, and the result is
incomprehensible “spaghetti code.” Programmers tend to read the source
code sequentially, and if there are no near-by explanation of the state-
ments, they guess about their meaning.

Restructuring / transformation
Program Transformation deals with turning one description of a system
(usually source code, but design and specifications are also possible) into
another. Most often, the result is source code of a different language with
improved characteristics. Program transformation has roots in the school
of automatic programming, which has the vision of automatically deriv-
ing design from specifications, and implementation from design.

An Introduction to Reengineering

20 Restructuring SDL to improve readability

Restructuring is transformation of a description to make it easier to
understand or less susceptible of errors when future changes are made
[Arnold89].

Program translation is a term often used as a synonym to program trans-
formation. However, program translation is normally used to describe a
transformation from source code in one language to another language at
the same level of abstraction. This makes program translation a subgroup
of program transformation.

A program transformation can be defined as a relation between two pro-
gram schemes. The transformation is said to be correct (or valid) if a cer-
tain semantic relation holds between the schemes [Hallstein89]. Usually,
the semantic relation is equivalence, i.e. the semantic meaning of the
scheme is preserved by the transformation.

William Chu [Chu93] divides program translation into two categories:
Translation via Transliteration and Refinement (TTR) and Translation via
Abstraction and Reimplementation (TAR). When doing TTR one just
translates the program word by word and then does some optimizations
on the result. TAR, on the other hand, creates an abstraction from the
input program (reverse engineering). Optimizations are done on the
abstraction before a new program is made by implementing the abstrac-
tion.

Program transformation is described more thoroughly in chapter 2.

Methodologies for reengineering
Many different persons have presented methodologies for reengineering.
Examples include Brodie and Stonebraker [Brodie95], the RENAIS-
SANSE project [RENNAISANSE98], the DOMIS project and the REDO
project.

The DOMIS (Distributed Object Management Integration System)
project was run by the MITRE corporation, and reengineered a large US
Air Force computer system. They also published a methodology for mod-
ernizing such systems [DOMIS96]. The methodology focuses on remod-

Areas of research

Restructuring SDL to improve readability 21

ularization, object orientation, and language independent communication
between modules with CORBA.

The REDO methodology for reengineering describes six stages in the
process [Zuylen93]:

1 Assess existing state

2 Install application in reengineering environment

3 Reverse engineer

4 Establish test procedure

5 Reengineer / Reimplement

6 Handover

However, none of these methodologies have been adopted by the reengi-
neering community in general. This is quite different than in the software
development community, where methodologies are immensely popular
(although they tend to be replaced every few years.)

Stevens and Pooley [Stevens98] have tried to explain the lack of success
the reengineering methodologies have had. The prime reason, they argue,
is that reengineering projects are inherently more vulnerable to social and
political problems than software development projects. There might be
considerable resistance to drastically changing legacy systems, because it
upsets the status quo. A reengineering of a system may also turn into a
reengineering of work processes, with all the political dangers that area
possesses. Software engineering research does not usually deal with such
problems, and has difficulty with incorporating social/political issues into
a methodology. On the other hand, because reengineering projects often
fail for political reasons, it is difficult to evaluate the applicability of a
methodology with normal software engineering methods.

Besides from social and political problems, organizations and their
projects differ very widely. The size and nature of reengineering projects
are so different that a methodology must be very general to cover them
all. This could easily make the methodology too general for practical use.

An Introduction to Reengineering

22 Restructuring SDL to improve readability

If a methodology describes details, it must either restrict itself to a spe-
cific domain, and with that restrict its market, or be huge. A methodology
that covered “everything” in detail would be so large that nobody would
bother to read it.

This problem also exists in the software development field, but there has
still been developed methodologies that have mastered the balance
between generality and detail reasonably well. This leaves hope that a
decent methodology might appear when the reengineering field matures.

Categories of reengineering projects
Of course, every reengineering project is unique, and no schema of cate-
gories can expect to match all projects to an appropriate label. During my
work on this thesis, I have not found any classifications of different reen-
gineering projects. So, for the convenience of the discussion later in this
thesis, I will divide reengineering projects into three categories, based on
which system artifacts are used and produced by the reengineering
project. The three categories are porting / recycling, renovation, and rede-
velopment.

Porting / recycling
A porting project is a project that moves a system from one language or
hardware platform to another. Porting projects need not include reengi-
neering, often it is just a rework of the source code to make it compile on
a different hardware configuration. When porting projects do include
reengineering, it is often called software recycling, as otherwise unusable
systems are reintroduced to the organization. (See the dictionary, appen-
dix A for a more formal definition of software recycling.)

Porting or recycling projects do little else than program translation via
abstraction and reimplementation (TAR) [Chu93]. Source code is reverse
engineered to some design description or just an abstract syntax tree
(AST). Then new source code is generated from the abstraction. The
code may be restructured to improve maintainability or efficiency, but no
functionality is altered. This corresponds to Sneed’s definition of reengi-

Categories of reengineering projects

Restructuring SDL to improve readability 23

neering: Zero percent of a program’s functionality is altered or enhanced
[Sneed95].

A typical porting project is presented by Boyle and Muralidharan in their
article “Program Reusability through Program Transformation”
[Boyle84]. A LISP program had to be ported to FORTRAN to be of use
to the general public. The program used a high degree of recursion,
which is impossible to do in FORTRAN. A transformation program was
used to abstract the program’s logic and rewrite it with legal FORTRAN
techniques.

Renovation
Renovation projects are projects that do some reverse engineering on a
system, and then gives it an overhaul before it is reimplemented. Source
code and other sources of information are first used in a design recovery
phase, where the structure of the old system is revealed. Then the design
is modified to fit a new set of requirements. From here on the project is
like a normal software development project, except that the developer
possibly has a lot of recovered design and possibly can generate large
parts of the implementation automatically.

Most reengineering projects fall into this category. A typical example is
the DOMIS project [DOMIS96], which both remodularized a large sys-
tem, reimplemented some of the modules, and added new interfaces for
the users.

Redevelopment
This is the more exotic category of the three. In a redevelopment project,
one discards the current implementation completely, and creates a new
one from the specification or design.

This could be the case if the organization really wanted a recycling
project, but decided that reverse engineering was infeasible for technical
or economical reasons. However, it is more plausible that the organiza-
tion has found the current implementation too messed up for salvaging,
or that the design will be changed so much that all the code would have to
be rewritten anyway.

An Introduction to Reengineering

24 Restructuring SDL to improve readability

The crucial point for this type of project is that the specification (or
design) must be 100 percent reliable. Very often, these high-level system
descriptions have not been updated during maintenance, so that the
source code is the only authoritative description of the system.

One concrete example of this type of project is the TTM3 (Time To Mar-
ket 3 months) project, which was conducted in Ericsson in 1998. The
project team set out to recreate the subscriber services part of the AXE
telephone exchange with a completely new architecture, and had to throw
away all the old source code.

Restructuring SDL to improve readability 25

C H A P T E R

3
CHAPTER3THE BASICS OF PROGRAM

TRANSFORMATION

General
In principle, program transformation is the process of rewriting one sys-
tem description into another using a set of transformational rules. (See
dictionary for a more formal definition.) A transformational rule has a
left-side pattern and a right-side pattern, and possibly some conditions.
The patterns can be written as regular expressions. When the left-side
pattern matches a string in the source program and the conditions are sat-
isfied, the string is substituted with the instantiated right-side pattern.

The most common and well-known form of program transformation is
compilation. In compilation, a program written in a high-level language
(source code) is transformed into a program in a low-level language
(assembler or machine code). The compiler does this by applying a set of
transformational rules that replaces each high-level statement with one or
more low-level instructions. Optimizing compilers (almost all compilers
these days) also go through a step of fine-tuning the produced code to run
faster. This is also accomplished by program transformation. A set of
rules recognize inefficient constructs and replace them with more effi-
cient solutions.

The Basics of Program Transformation

26 Restructuring SDL to improve readability

This shows that program transformation can move a program from one
level of abstraction to another (compilation), or keep it at the same level
(optimization). As a transformation between levels of abstraction can
move upwards, to a more abstract level, or downwards, to a less abstract
level, we get three forms of transformation:

1 Downwards transformation

2 Upwards transformation

3 Optimizing (horizontal) transformation

Downwards transformation

In compilation, a program in a third generation language is turned into
assembler code (second generation language), and then to machine code.
Assembler code is, in principle, on the exact same level of abstraction as
machine code, the instructions are just written in a human-readable form
instead of zeros and ones. As an example of compilation, let us look at a
piece of C code and the corresponding MIPS assembler code1:

C code:earnings = (income1 + income2) - (expence1 + expence2);

The variables are assigned to registers $10, $11, $12, $13, and $14,
respectively. $8 and $9 are used as temporary variables.

MIPS code:
add $8,$11,$12 (temp1 = income1 + income2)
add $9,$13,$14 (temp2 = expence1 + expence2)
sub $10,$8,$9 (earnings = temp1 - temp2)

Because the MIPS instructions only have three operands, the evaluation
has to be done in three steps. The transformational challenge is to rewrite
the expression into expressions with three operands, and then translate
the expression to MIPS assembler code. In the compilation information

1.The examples in this section are inspired by the examples in Patterson & He-
nessy’s “Computer Organization and Design” [Patterson94]. The first example is
taken directly from the book, the others are adjusted to fit the text.

General

Restructuring SDL to improve readability 27

such as variable names and comments are lost, but normally this does not
matter, as no one will read the compiled code.

Upwards transformation

Program transformation to a more abstract level is the essence of reverse
engineering. Machine code or assembler code is transformed into third-
generation language, or third generation language is transformed into
design descriptions. But reverse engineering faces a fundamental prob-
lem: Meaningful information lost in the downwards transformation has to
be recreated to add value to the descriptions. Let us see what a decom-
piler might have made of the MIPS code from the previous example:

MIPS code:
add $8,$11,$12
add $9,$13,$14

sub $10,$8,$9

C code:
v008 = v011 + v012;
v009 = v013 + v014;
v010 = v008 - v009;

The decompiler has not really lifted the program to a higher level of
abstraction, it has really just written assembler code in the C language. It
would take an optimizing step to turn the code into one statement:
v010 = (v011 + v012) - (v013 + v014);

Still, there are no clues as to what role the piece of code plays in the pro-
gram. That would have to be answered by documentation or system
experts.

Optimizing (horizontal) transformation

Optimizing transformation leaves the transformed program at the same
level of abstraction. Depending on the purpose of the transformation, this
activity can also be called restructuring or pretty printing. There can be
many reasons for doing the transformation, see “Impact on quality” on
page 35.

The Basics of Program Transformation

28 Restructuring SDL to improve readability

For efficiency reasons, the previously shown MIPS code can be rewritten
to avoid the use of two temporary registers:

MIPS code:
add $10,$11,$12 (earnings = income1 + income2)
sub $10,$10,$13 (earnings = earnings - expence1)
sub $10,$10,$14 (earnings = earnings - expence2)

This requires the transformational system to recognize that the registers
$8 and $9 (and the parentheses in the C code) was unnecessary, since the
order of the operations are unimportant.

For the sake of readability and maintainability, a program may be restruc-
tured to use FOR loops instead of GOTOs. Consider for example this C
function:

void fill_matrix(matrix a, int m, int n)
{

int i, j;
i = 0;
Mloop: j = 0;

Nloop: a[i][j] = rand() % (2 * N + 1) - N;
 j++;
 if(j <= n) goto Nloop;

i++;
if(i <= m) goto Mloop;

}

A transformational rule can recognize what elements constitutes a loop,
and create a FOR statement to do the same:

void fill_matrix(matrix a, int m, int n)
{

int i, j;
for (i = 0; i < m; i++)
{

for (j = 0; j < n; j++)
 { a[i][j] = rand() % (2 * N + 1) - N;

}
}

}

The four levels of program transformation

Restructuring SDL to improve readability 29

The four levels of program transformation

Kozaczynski, Ning, and Engberts [Kozaczynski92] divided program
transformation into four levels, depending on how deep an
“understanding” the transformation system has of the program.

Level 1: Text-Level Transformation

When the transformation system sees the program as nothing but charac-
ter strings, string matching can be used to identify elements that con-
forms to the left-side of the rules. This makes the transformation operate
similar to the search-and-replace function found in most text editors. For
example, we could wish to rename the variablei in the C function in the
previous section tomIndex . An automatic search-and-replace would pro-
duce this result:

vomIndexd fmIndexll_matrmIndexx(matrmIndexx a, mIndexnt m,
mIndexnt n)
{

mIndexnt mIndex, j;
for (mIndex = 0; mIndex < m; mIndex++)
{

for (j = 0; j < n; j++)
{ a[mIndex][j] = rand() % (2 * N + 1) - N;
}

}
}

Obviously, more understanding of the environment surrounding an ‘i ’ is
necessary to get what we want.

Level 2: Syntactic-Level Transformation

Syntactic information about a program can be obtained by parsing it into
an abstract syntax tree (AST). The parsing into the AST is itself a form of
upwards transformation, as the program text is replaced by syntactic ele-
ments like variables, operators, and statements. On this level, the left-side
of the rules are abstract syntax patterns instead of string patterns, which
simplifies the situation a great deal.

The Basics of Program Transformation

30 Restructuring SDL to improve readability

REFINE is a transformational system which works on ASTs. If provided
with the definition of a language, REFINE recognizes variables, opera-
tors and statements. To rename the variable i to mIndex , we could have
issued this command to REFINE:

IF $i -> $mIndex

Level 3: Semantic-Level Transformation

Semantic-level transformation is also performed on an AST, but the AST
is enriched with relations between the elements, to represent the semantic
relations between the syntactic elements of the program.
For example, the AST for the C function could be supplied with informa-
tion about which statements belonged to which FOR-loops, and which
variables were declared inside which functions. Then it would be possi-
ble to rename i to Mindex just in the fillmatrix function:

IF $i ->T $mIndex
where T= statement is-element-in fillmatrix

The where-statement is a says that the transformation T should only be
performed on variables named ‘i ’ in statements inside the fillmatrix func-
tion. According to Kozaczynski, semantic-level information is sufficient
to support correctness-preserving transformations such as code optimiza-
tion and restructuring [Kozaczynski92].

Level 4: Concept-Level Transformation

Transformations on this level also incorporates knowledge of higher-level
concepts in the rules. These concepts can be programming concepts,
architectural concepts or domain concepts. For example, a rule can spec-
ify that only IF-statements that are part of a routine sorting customer
addresses shall be transformed.

Recognizing programming concepts is not so difficult, compared to the
other concepts, since a programming language has a complete specifica-
tion. A parser for the language can be generated from a model and gram-
mar of the language.

Transformational development

Restructuring SDL to improve readability 31

Architectural and domain concepts are more abstract, and by nature more
difficult to recognize. According to Kozaczynski, two fundamental ques-
tions must be addressed: What to recognize, and how to recognize it.

A detailed domain model and a corresponding architectural model will
help a great deal with the first question. These models should specify a
concept classification hierarchy, but the models will probably never be as
complete as a programming language model.

The how question may not be answered with only a syntactic approach,
since the concepts may not be localized. Abstract concepts are more
closely connected by semantic relations such as control flow, data flow
and calling relations. Kozaczynski et. al. propose to recognize concepts
by patterns of semantic relations in the AST and by defining a hierarchy
of sub-concepts.

Transformational development

The basic idea of transformational development is to derive an imple-
mentation from the specification of the system through a series of down-
ward transformations. Transformational development is related to
automatic programming, but I will not use that term here, as it has a too
general and vague meaning.2

If the transformations are sufficiently formally defined, each step of the
development can be (relatively) easily verified. To make transformations
operate in small, manageable steps, the language used should facilitate
system descriptions at many levels of abstraction. (Considerably more
than the four levels defined in the dictionary for this paper). Such lan-
guages are commonly called wide spectrum languages.

2.The term “automatic programming” has a likeness to the end of the rainbow: it al-
ways seems pretty close, but when you get there it has moved some place else. Belz-
er states that “at any point in time, the term has usually been reserved for
optimizations which are just beyond the current state of the art” [Belzer85].

The Basics of Program Transformation

32 Restructuring SDL to improve readability

Hallsteinsen et. al. [Hallsteinsen89] describes an approach for transfor-
mational development with SDL and CHILL (CCITT HIgh Level Lan-
guage). They argue that SDL and CHILL are such wide spectrum
languages, well suited for this sort of development. Their idea is to first
describe the system on a fairly abstract level in SDL, then apply a set of
transformational rules to make the SDL more implementation oriented.
In the last stages the SDL is transformed to high-level CHILL and then to
low-level CHILL code.

Problems with restructuring / Program transformation

Upwards and optimizing transformation have some common problems:
the program transformed by a computer should still be readable for a
human. In a very interesting article, Frank Calliss pointed out the largest
problems with automatic code restructurers [Calliss88]:

• Understandable, but non-structured code is transformed into
structured, but incomprehensible code

• Auto-created variables get meaningless names

• Comments are detached from their code and become meaningless

Although this article was written to explain the damage automatic
restructuring can do to COBOL code (as a response to Miller and
Strauss’ article about the benefits of restructuring COBOL [Miller87]), it
is a good description of the problems with restructuring in general.

The rules that ensures structured (and thereby readable) code in general,
might not be the best in every case. Calliss uses simulated CASE state-
ments (COBOL did not have CASE statements before COBOL85) and
loops with mid-exit or multiple exits as example.

Problems with restructuring / Program transformation

Restructuring SDL to improve readability 33

If an automatic restructurer changes all unstructured code into the three
allowed structures3, the logic in these constructs will be cluttered, not
clarified.

When new names are introduced, the computer has (obviously) no
chance of giving these very meaningful names, as mentioned in
“Upwards transformation”, page 27.

If code is moved or split, there is a great chance that comments in the
code will become meaningless. Comments describing the purpose of a
larger part of the program can be hidden away in a subroutine together
with its surrounding code. Comments explaining specific operations will
become quite puzzling if that statement is transformed into something
equivalent, but in a different form. When code is split, comments can be
moved with the wrong part. (After all, some comments describe the code
above in the program, some the code below).

Better programming or Artificial Intelligence could probably improve the
computers performance somewhat. After all, the chip manufacturers have
managed to produce processors that can guess the outcome of a test 90%
of the time, so that it can process instructions ahead of time (Intel’s Pen-
tium II). But I suspect that these problems can only be solved by humans,
since they require judging the quality of names and solutions. (More on
measuring quality with computers on page 50.)

3.All programming logic can be expressed with three structures: Sequence, selection
(such as IF-THEN), and iteration (such as FOR-loops). For example, a CASE state-
ment can be expressed as a series of IF-THEN statements, and FOR, WHILE, and
UNTIL loops are interchangeable, since they are essentially the same. This was
probably first stated by Böhm and Jaccopini [Böhm66].

The Basics of Program Transformation

34 Restructuring SDL to improve readability

Restructuring SDL to improve readability 35

C H A P T E R

4
CHAPTER4RESTRUCTURING SDL

As the practical part of my master’s thesis, I decided to make a program
to restructure SDL diagrams for better readability. The program was first
tested on a small example, created to fit the purpose, and later on a real
world example, a diagram from the T.30 project (see “The Test Case” on
page 71). The program was calledtransformer.pl , since it would be a
transformational system.

Impact on quality

Many aspects of a program’s quality can be improved by restructuring. In
his book “Software Evolution: the Maintenance Challenge”, Lowell J.
Arthur [Arthur88] lists 11 qualities that restructuring may improve:

• Maintainability

• Flexibility

• Reliability

• Reusability

• Usability

• Efficiency

• Testability

• Integrity

Restructuring SDL

36 Restructuring SDL to improve readability

• Portability

• Interoperability

• Correctness

The ISO standard for software quality [ISO92] divides maintainability
into four characteristics: Analysability, changeability, stability and testa-
bility. Source code that is difficult to read and comprehend has a low
degree of analysability. Poor analysability will usually lead to poor
changeability.

The same ISO standard divides usability into three characteristics: under-
standability, learnability, and operability. Source code with poor readabil-
ity will typically have a low degree of understandability. Poor
understandability will probably lead to poor learnability. This means that
the readability is an integral part of a piece of software’s maintainability
and usability.

Figure 4.1 Part of the ISO software quality model

SDL is a neat and tidy language, compared to C, with its many low level
commands, or Perl, with its infinite possibilites for obscure and incom-

Maintainability

Understandability

Learnability

Operability

Analysability

Changeability

Stability

Testability

Usability

Restructuring vs. pretty printing

Restructuring SDL to improve readability 37

prehensible code. Still there are plenty of opportunities to produce com-
plex and unintelligible SDL descriptions.

Restructuring vs. pretty printing

Pretty printing is closely related to restructuring done for readability pur-
poses. The goal is the same: to make the program easier to read and com-
prehend. It is possible to argue that readability is easiest to improve with
pretty printing, and that using program transformation for this is a bit of
an overkill.

I think that this is not the case. A pretty printer changes only the layout of
the program (typically indentation and fonts), while a restructurer can
change the syntax or semantics of the program to improve the readability.
With restructuring, it is possible to change the program much more
deeply than with a pretty printer, and thereby (hopefully) achieve better
results

An introduction to SDL

This section is not intended to give the reader a deep understanding of
SDL, but merely to present the parts of SDL mentioned in this thesis. For
a more complete coverage of SDL, I recommend the books “Systems
Engineering Using SDL-92”, by Olsen et. al. [Olsen94], or “SDL. For-
mal Object-Oriented Language for Communicating Systems”, by
Ellsberger, Hogrefe, and Sarma [Ellsberger97].

SDL stands for Specification and Description Language, and is defined
by ITU in the standard Z.100 [ITU93]. SDL has evolved from state dia-
grams in the 70s, and is now a full-fledged programming language with
variables, signals, procedures, types, and inheritance. SDL is a graphical
language, but there is also defined a textual representation of SDL called
PR, Prose Representation.

The basic element of a SDL system is theprocess. The process has
states, behaviour, and can send and receivesignals, much like a system
process in a computer. The signals are defined to be asynchronous, so it is

Restructuring SDL

38 Restructuring SDL to improve readability

not possible to know when a signal will arrive. Different SDL processes
operate concurrently, so SDL is well suited to model real-time systems.

Figure 4.2 and Figure 4.3 show the behaviour of a washing machine,
described with a informal state diagram and a SDL process.

Figure 4.2 Washing machine, informal state diagram

The empty oval symbol at the top left of Figure 4.3 is thestart symbol.
This symbol defines the initialization of the process. The semi-oval sym-
bol beneath it marked “IDLE” is astate symbol. A process “rests” in a
state, and when a signal comes in, it spurs into action, may do some
tasks, and then moves to another state (or back to the same one). The
symbols marked “on” and “off” below the state symbol areinput sym-
bols. The symbols marked “ok” and “nok” areoutput symbols.

The semi-oval symbols below the input symbols are callednextstate
symbols. They look exactly like state symbols, but defines which state
the process should go to next. The dash in one of the nextstate symbols
means that the process should remain in the same state, in this case
IDLE.

IDLE

WASHING

TUMBLINGon

off

off next

finish,off

An introduction to SDL

Restructuring SDL to improve readability 39

Figure 4.3 Washing machine, as an SDL process

For modularization of descriptions, SDL has the concepts ofprocedures
andconnections.Procedures are very similar to procedures in other pro-
gramming languages. Connections are pretty much like GOTOs.

Process WashOperation

IDLE

on off

WASHING -

WASHING

next off

TUMBLING

finish off

 ok nok

TUMBLING IDLE

 ok nok

IDLE

 ok nok

IDLE

Restructuring SDL

40 Restructuring SDL to improve readability

Figure 4.4 A process that uses a procedure

The rectangular symbol marked “WASH” in Process WashOperation in
Figure 4.4 is theprocedure call symbol. The odd-looking symbol in the
right corer is the procedure reference symbol. This tells that the proce-
dure is defined in another diagram.

The symbol in the upper right corner of Procedure Wash in Figure 4.4 is
theprocedure start symbol. The circular symbol with a cross is the
return symbol.

Instead of using a procedure, the behaviour could be expressed with a
connection, as shown in Figure 4.5.

IDLE

on

-

WASH

PerformWash

Process WashOperation, extract Procedure Wash
 Wash

 ok

An introduction to SDL

Restructuring SDL to improve readability 41

Figure 4.5 The same process, with a connection instead of a procedure

The circular symbol marked “WASH” to the left in Figure 4.5 is called a
join symbol. Its effect is to send the process to the connection named
“WASH”. The same symbol used on the right of the figure is called a
label symbol in that context. The meaning of “join” and “label” corre-
sponds pretty well to the meaning of “goto” and “label” in low-level lan-
guages. The dashed box to the right of the label symbol is a comment.

An SDL system is defined to consist ofblocks, which in turn contains
one or more processes. For processes in different blocks to be able to
communicate, there must exist achannel between their parent blocks.
Communication between processes in the same block are sent through
signalroutes.

IDLE

Process WashOperation

WASH

WASH

PerformWash

IDLE

Connection Wash

on

 ok

Restructuring SDL

42 Restructuring SDL to improve readability

Figure 4.6 An SDL system with blocks and signalroutes

Figure 4.6 shows the system “House” with the blocks “HouseControl”,
“TV”, “Refrigerator”, and “WashingMachine”. The arrows between the
blocks are the channels, named “S1”, “S2”, and “S3”. The words
enclosed in brackets close to the channels are the names of the signals
that can be sent over the channel. For example, HouseControl can send
the signals “on”, “off”, “next”, and “finish” to WashingMachine. Wash-
ingMachine may send either “ok” or “nok” in return.

Figure 4.7 shows the block WashingMachine. The channel S1 enters the
block, and all incoming signals are sent to the only process in the block,
WashOperation, depicted in the octagonal process symbol.

System House

TV Refrigerator WashingMachine

HouseControl
S1S2

S3
[warmer,cooler]

[on,off,channel(x)] [on,off,next,finish]

[OK,NOK]

[OK,NOK]

[OK,NOK]

Development models

Restructuring SDL to improve readability 43

Figure 4.7 A block with one process

Development models

Transformation to improve readability can be used in several develop-
ment models. For example,Transformer.pl could be used to improve
SDL descriptions in a transformational development, reengineering proc-
ess, or in software maintenance.

Transformational development

Transformational development derives an implementation from a specifi-
cation through a series of transformations (see “Transformational devel-
opment” on page 31).Transformer.pl could be used in one of these
transformations to improve the readability of the SDL that is generated
from the specification. In the test case (see page 71)transformer.pl was
used in this way. A system description in SDL, automatically derived
from the T.30 standard, was transformed with the program to create a
more readable version.

Block WashingMachine

WashOperation
[on,off,next,finish]

S1 [OK,NOK]

Restructuring SDL

44 Restructuring SDL to improve readability

Figure 4.8 Transformer.pl in a transformational development process

Reengineering

In a SDL-oriented reengineering process, SDL will be generated from
old source code by a reverse engineering tool. This SDL will most proba-
bly not be very readable. My program could reorganize the SDL to be
more readable before the forward engineering began.

High level
spec. / design

Transformation

SDL

Transformer

Better SDL

Generation

Source code

Other efforts

Restructuring SDL to improve readability 45

Figure 4.9 Transformer.pl in a reengineering process

Maintenance

As previously discussed, all software tend to degrade over time (see Leh-
man’s laws on page 13).Transformer.pl can be used to bring degraded
SDL descriptions back to a specified format.

Figure 4.10 Transformer.pl in a maintenance process

Other efforts

The only other program that can reorganize graphical SDL descriptions is
the SDT program package from Telelogic AB. The package has a “tidy
up” function that reorganizes SDL diagrams. An example of the func-
tion’s work is shown in Figure 4.11.

The purpose is to enhance the readability for the programmer. The func-
tion works well, but clearly has not incorporated many rules to improve
the SDL. The rules are not explicitly stated in the documentation, and
from my testing I only discovered three:

Old Source code

Reverse eng.

Development

New SDL

Generation

New source code

SDL Transformer Better SDL

Old SDL Transformer Better SDL

Restructuring SDL

46 Restructuring SDL to improve readability

1 Gather all declarations on the first page

2 Each state shall be described in a different flow.
(But there can be several flows on a page).

3 The states shall be listed alphabetically, and all connections shall be
defined after the states.

The problem with the function is that it compresses the diagrams and
leave little room for new additions. The SDT approach does tidy the dia-
grams up a bit, but breaks most of the rules for readable SDL set forth in
this paper (see page 49).

SDT will place all nextstates 50 pixels below their predecessor, and thus
disaligning the nextstates if they had been aligned. The program may also
create new connections if a flowline does not fit on a page, instead of
moving the flowline to another page.

Principles

Restructuring SDL to improve readability 47

Figure 4.11 The process ToyExample after using the “tidy up” function.
(The original Toy Example is in Appendix A.)

Principles

The goal of the restructuring was to make messy SDL code conform to a
code standard that ensured good readability. However, there were few

Restructuring SDL

48 Restructuring SDL to improve readability

guidelines for readable or maintainable SDL diagrams in the literature.
There are many proposed standards available for writing “good” code in
most programming languages, but little has been written for graphical
languages. A quick search on the Internet gave me guidelines for writing
Java, C++ and Perl, but when I searched for “readable UML” or “pretty
MSC”, I found nothing.

A fruitless trip to the bookstore revealed that the books on UML (I did
not find any on MSC) showed little attention to readability. The authorita-
tive UML book by Booch, Rumbaugh and Jacobson [Booch99] does
have some tips on how to draw “structured” UML, but this is just a very
minor topic.

The only source of rules for “good SDL” I found was Bræk & Haugen’s
“Engineering real time systems” [Bræk93]. The book divides the rules
into three classes: Analysis rules (A-rules), structural rules (S-rules), and
notational rules (N-rules).

The analysis rules are meant to tell the designer how to analyse a system
before the SDL is written. The structural rules issue guidelines for SDL
modelling of a system. The notational rules are concrete advises to how
the SDL should look on paper. Obviously, the S-rules and the N-rules are
the most interesting for this thesis, as they directly influence the readabil-
ity of SDL diagrams.

Unfortunately, most of the rules were so general that a computer would
not be able to detect a violation of them, not to mention correcting such
an error. For example, a N-rule named “Atleast, finalized” said:

“In specialising, take care to balance flexibility and analysability prop-
erly using ATLEAST and FINALIZED to constrain the virtual types”.

It is just too difficult for a computer to decide if virtual types are flexible
“enough”.

I decided to divide the rules I would use into three categories: rules with
correctable violations, rules with detectable violation and rules without

Principles

Restructuring SDL to improve readability 49

detectable violations. Of the 65 rules presented in the book, only two fit
into the first category, and another two in the second. In addition, I made
some new rules after noticing some typical problems in the SDL dia-
grams I have been working on.

The rules I selected for the experiment were as follows:

Rules with correctable violations:

N-rule: State and nextstate

1 Each page of a diagram should have only one state and the state should
be at the top of the page. (Example in Figure 5.2 - Figure 5.5).

2 All nextstates shall be aligned at the bottom of the page. (Example in
Figure 5.2 & Figure 5.3).

3 New: Connections should also be described on separate pages.

N-rule: Source and destination
Specify the sender of an input signal with a From: statement in a com-
ment symbol. Specify the receiver of an output signal as part of the send
statement or in a comment symbol. (Example in Figure 5.8 & Figure
5.9).

New rule: Signal parameters
If there are more than two parameters to a signal (one if there is a VIA or
TO statement), the parameters should be listed in a text extension symbol
to the right of the signal symbol. (Example in Figure 5.6 & Figure 5.7).

New rule: Decision layout
If decisions are used, the first alternative outcome shall be directly below
the decision symbol, with the other alternatives spread out to the right.
(Example in figure Figure 5.10 & Figure 5.11).

Rules with detectable violations:

N-rule: Names in macros
Each macro call shall have a unique number.

Restructuring SDL

50 Restructuring SDL to improve readability

S-rule: Control flow
Branch on signals, not decisions.

New rule: Meaningful names
All names of variables and signals should be meaningful, preferably
with a prefix and a descriptive identifier.

New rule: Connections
Connections should be used as seldom as possible. If a connection repre-
sents a recurring solution, use a procedure instead. If a connection just
represents accidental reuse of behaviour, expand it on the places it
occurs.

The program was to use a transformational approach in the restructuring.
That meant that the changes made to the SDL should be described as
transformational rules. The program should also follow the principle of
correctness-preserving described by Boyle & Muralidharan [Boyle84]:
The order in which the transformations are applied must make no differ-
ence, or we must control the order in which we apply them.

Non-detectable violations

Most of the rules by Bræk & Haugen are guidelines to help the develop-
ers create systems of high quality. For the program trying to verify if the
rules are fulfilled, two problems arise. Firstly, even though a rule may
have been followed, the results may be very difficult to distinguish from
SDL produced without following the rules. Secondly, quality is inher-
ently difficult to measure with a computer.

According to the transcendental view of philosophy, quality is something
that can be recognized, but not defined. The quality of an item depends
greatly of the context it is in, and is subject to personal opinion. Since
quality cannot be defined, it is difficult for humans to communicate about
quality. Computerized recognition is totally dependent on clear defini-
tions, so all automatic evaluation of quality will be impossible, according
to this line of reasoning. To get anywhere with computers in this matter,

Principles

Restructuring SDL to improve readability 51

we have to abandon the transcendental view of quality and adopt a more
pragmatic view.

To make the computer useful in measuring quality, we must assume that
there is a connection between quality and some measurable characteris-
tics of a SDL description. If the (easily recognizable) characteristics are
present, the program must have the quality in question. The challenge is
to identify these characteristics so that a computer program may recog-
nize them. The problem with most of the rules is that they are qualitative,
and have no easily definable characteristics. For example, the rule “adapt-
able components” state:

Achieve adaptable components by introducing virtual types. Ensure that
such types get proper general names. Balance the adaptability by using
ATLEAST to limit the redefinability.

It is simply impossible to define precise characteristics for a “properly
general name”. One could try to define “balanced adaptability”, by mak-
ing rules for the number of ATLEASTs compared to the number of vir-
tual types. Still, it is unlikely that the ratio of ATLEAST/Virtual types
would have any correlation to how adaptable the components were.

Detectable vs. correctable violations

The correctable violations make up a subset of the detectable violations.
All these violations have some characteristics that can tell that the viola-
tions are present, i.e. the rules tell us how things shouldnot be. For
example, it is easy to check if a process uses decisions, but it is anything
but trivial to replace the decisions with something else.

The essential difference is that the rules for correctable violations also
contain detailed (enough) instructions of how thingsshould be. That
means that a computer can set things right, without human input. For
example it is fairy easy to make sure that an SDL description has one
state on each page, and put source/destination statements all its signals.

Restructuring SDL

52 Restructuring SDL to improve readability

These rules are really the only ones suited for automatic restructuring,
but unfortunately there are very few of them.

Restructuring SDL to improve readability 53

C H A P T E R

5
CHAPTER5THE EXPERIMENT

Choice of methods

To make my program as generally usable as possible and to simplify the
programming, I decided that it should work on SDL descriptions in PR/
CIF (Common Interchange Format). Since Perl is a great language for
text manipulation, and I have some experience programming with it, I
chose to use Perl for the experiment.

These choices were based mainly on personal preferences, but the
approach also proved quite portable. There are three major vendors of
graphical SDL tools: Cinderella, Telelogic, and Verilog. I tested my pro-
gram with Telelogic’s SDT on UNIX (SUN Solaris) during the develop-
ment. Later, the program was tested with Cinderella on MS windows and
Verilog’s Geode on UNIX, and both worked reasonably well with my
program.

PR/CIF is a plaintext format, where the SDL is written in its textual form,
with CIF commands that control the layout. The CIF commands are spec-
ified in the ITU standard Z.106 [ITU92].

The Experiment

54 Restructuring SDL to improve readability

A SDL description in PR/CIF can look something like this1:

/* CIF ProcessDiagram */
/* CIF Page State_IDLE (2650,1800) */
/* CIF Frame (0,0),(2650,1800) */
/* CIF CurrentPage State_IDLE */
/* CIF Start (250,100) */
start;
/* CIF Line (350,200),(350,250) */
/* CIF NextState (250,250) */
nextstate IDLE;
/* CIF State (250,250) */
state IDLE;
/* CIF Line (350,350),(350,400) */
/* CIF Input (250,400) Right */
input DefineSub
/* CIF TextExtension (500,400) Right */
/* CIF Line (500,450),(450,450) */
(SubId,
AntDig,
SNB)
/* CIF End TextExtension */
;
/* CIF Line (350,500),(350,550) */
/* CIF Output (250,550) Right */

Design of the program

The program was calledtransformer.pl , since it would be a transforma-
tional system. A graphical SDL tool would generate a PR/CIF file.
Transformer.pl read this file and made a new and improved PR/CIF file,
which was then imported back into the graphical tool. With Verilog’s
Geode, there was not even a export/import step, as Geode stores its dia-
grams in PR/CIF.

1.This PR/CIF is from the toy example shown in appendix B.

Design of the program

Restructuring SDL to improve readability 55

Figure 5.1 The interworking of transformer and a graphical SDL tool

The basic operation of the program was this:

1 Open a specified file and read it into an array2 called@sdlfile .

2 Run a set of transformations on the array.

3 Write the array to a specified file.

The transformational rules were programmed as procedures, one for each
rule. This made the general structure of the program very clean. The main
part of the program looked like this (the code is from the final version,
and have some procedures that are not explained until Chapter 6):

#Initialize: Open infile, read it into the sdlfile array.
print "Transformer starting\n";
open(INPUT,$infile) or
die("Could not open input file $infile.\n");
@sdlfile = <INPUT>;
close(INPUT);

#Perform transformations
if($insertComments)
{ &insertTextExtensions;

&makeSignalTextExtension;
}

if($removeInvisibleJoins)
{ &removeInvisibleJoins;}

2.In Perl, arrays do not have a fixed length, so items can be appended and deleted
from the array.

Graphical tool Graphical tool

Transformer

CIF file New CIF file

export import

The Experiment

56 Restructuring SDL to improve readability

&expandConnections;
&stateOnNewPage;
&alignPages;
&resolvePageOverflow;
&alignNextstates;
&removeEmptyPages;

if($showWarnings)
{ &warnShortNames;

&warnBranchOnDecision;
}

#Write transformed SDL to file
open(OUTPUT,">$outfile") or
die("Could not open output file $outfile.\n");
foreach $outline (@sdlfile)
{ print OUTPUT "$outline";
}
close(OUTPUT);

Implementation of the rules

Each rule was to be implemented as one procedure, but some of the more
complex ones, like “state and nextstate”, was divided into multiple proce-
dures for the sake of modularity. All the rules were in principle correct-
ness-preserving, and the procedures should also be that. Therefore, the
procedures had make sure that the file was still a correct PR/CIF descrip-
tion before terminating.

Since the method of recognition of candidates for transformation was
string matching, the program should fall into Kozaczynski’s first level of
transformation (see “The four levels of program transformation” on page
29). However, to be correctness-preserving, the program had to recognize
some of the syntax and the semantics of the SDL description. I tried to
accomplish this by setting careful conditions for when the rules should be
applied.

Implementation of the rules

Restructuring SDL to improve readability 57

State and nextstate

The rule was implemented as three procedures.StateOnNewPage would
insert new pagebreaks,alignPages would align the symbols on newly
created pages, andalignNextStates would align nextstate symbols.

If more than one state was defined on a page, extra pagebreaks was
inserted. For example, a page with five states would be split into five dif-
ferent pages. Figure 5.2 shows the original page, Figure 5.3 - Figure 5.5
shows three of the five pages after the transformation.

Figure 5.2 Five different states on one page, no alignment of nextstates

Process ToyExample Multistate(2)

PhaseA_T

CED_OK

Setup_OK
TO: Caller

PhaseA_T2

Terminate

TerminateAcc
(CallerId)

EndCall
TO Central

IDLE

DIS

DisFound
TO Central

PhaseA_T3

Terminate

TerminateAcc
TO Central

IDLE

Callsetup,
Callfax

Callsetup,
Callfax

CED_NOK

Setup_NOK
TO Caller

IDLE

Callsetup,
Callfax

PhaseB_T

CED_OK

Setup_OK

PhaseB_T2

Terminate

Terminate_OK

EndCall
TO Central

IDLE

Callsetup,
Callfax

Callsetup,
Callfax

The Experiment

58 Restructuring SDL to improve readability

Figure 5.3 State PhaseA_T as the only remaining state on the page, nextstates aligned

Figure 5.4 PhaseA_T2 on a separate page

Process ToyExample

PhaseA_T

CED_OK FROM: ?

Setup_OK
TO: Caller

PhaseA_T2

CED_NOK FROM: ?

Setup_NOK
TO Caller

IDLE

Callsetup,
Callfax

Multistate(6)

Process ToyExample State_PhaseA_T2(6)

PhaseA_T2

Terminate FROM: ?

TerminateAcc
(CallerId) TO: ?

EndCall
TO Central

IDLE

DIS FROM: ?

DisFound
TO Central

PhaseA_T3

Callsetup,
Callfax

Implementation of the rules

Restructuring SDL to improve readability 59

Figure 5.5 PhaseA_T3 on a separate page

Signal parameters

If a signal has too many parameters, the text will flow outside the symbol
and clutter the diagram. ThemakeSignalTextExtension procedure created
a text extension to the right of the symbol if the signal had three or more
parameters. Figure 5.6 shows a signal with parameters that flows outside
the symbol. Figure 5.7 shows the same signal with the parameters put in a
text extension box.

Figure 5.6 A signal with too many parameters

Process ToyExample State_PhaseA_T3(6)

PhaseA_T3

Terminate FROM: ?

TerminateAcc
TO Central

IDLE

Callsetup,
Callfax

CED
(CallerId,
 Line,
 BBQ,
 SelfId)
TO Central

The Experiment

60 Restructuring SDL to improve readability

Figure 5.7 The signal, after creating a Text Extension box for the parameters

Source and destination

When the source or destination of a signal is specified, it is much easier
for a casual reader to understand what goes on in a SDL system. How-
ever, it is not mandatory to specify sources and destinations in SDL, as
this can be derived from the definitions of the channels and signalroutes.
But these definitions are stored in the system and block diagrams, not the
process or procedure diagrams, so it is not easily accessible to the reader.

Since the transformation program only looked at a process or procedure
file, it had no way of knowing where a signal came from or was going to.
Therefore, the program just added dummy text extensions and issued
warnings to the user. Figure 5.8 and Figure 5.9 show how the dummy text
extension is added to remind the programmer to fill in the source of the
signal.

Figure 5.8 The signals CED_NOK and Setup_NOK, before applying the rule

CED (CallerId,
 Line,
 BBQ,
 SelfId)
TO Central

CED_NOK

Setup_NOK
TO Caller

Implementation of the rules

Restructuring SDL to improve readability 61

Figure 5.9 The signals after applying the rule

Decision layout

For lack of time, this rule was not implemented. On the test case, the
decisions were manually fixed to follow this rule, since that made the rest
of the layout easier to adjust. Figure 5.10 shows a typical example of
undesired layout of a decision. Figure 5.11 shows a decision with the
decision symbol to the left, and the alternatives in sorted order.

Figure 5.10 A decision that violates the rule

Figure 5.11 A decision that follows the rule

CED_NOK

Setup_NOK
TO Caller

FROM: ?

RetVal

PhaseDisconnectLine

idle - PhaseB_R

0
1

2

RetVal

PhaseDisconnectLine

idle - PhaseB_R

0 1 2

The Experiment

62 Restructuring SDL to improve readability

Control flow

According to the principles presented earlier, branching on decisions is
undesirable. Unfortunately, there is no easy way to transform decisions
into, for example, branching on signals. Because of that, the program had
to just issue a warning on each decision. Of course, if decisions is used
extensively in a diagram, the user will have lots of warnings scrolling
across his screen, and be unable to read them all. The user might start
ignoring all the output, and suffer from so called “warning blindness”. To
avoid this, I included an option to turn off warnings.

Meaningful names

As discussed earlier, computers cannot recognize quality if it is not quan-
titatively defined. Obviously, the program could never turn cryptic names
into meaningful ones, so it had to settle for issuing warnings about bad
names instead. From the idea that short names often are not very mean-
ingful, I decided that the procedure should warn if a name was shorter
than 5 characters.

With these decisions made, the implementation was straightforward. The
procedureWarnShortNames stepped through the array, and every time it
found a DCL or SIGNAL statement with a name shorter than 5 characters
it printed: “Warning: variable/signalname-in-question has a short name.”

Connections

Connections can be thought of as the GOTO of SDL. A join statement
jumps to the definition of the connection, and there is no guarantee that
the execution will return to the same place. The problems with GOTOs
have been discussed for almost three decades, and I will not repeat them
here. For a good explanation of these problems, see Miller and Strauss’
article “Implications of automatic restructuring of COBOL” [Miller87].

There are generally two ways to remove connections: write out the whole
definition instead of each join statement, or turn the connection into a
procedure and the joins into procedure calls. The expansion method is

Implementation of the rules

Restructuring SDL to improve readability 63

straightforward, but creates duplicate code, which is negative for mainte-
nance.

The procedure approach facilitates code reuse and modularity, but has a
call-return structure, as opposed to the GOTO-like jump structure of con-
nection. The structure is easily transformed when the connection only
returns to one place (all nextstates in the connection goes to the same
state). Then all nextstate statements are made into return statements, and
the joins are made into a procedure call and a nextstate statement.

When the connection can return to different states it gets a bit more com-
plicated. One solution is to let the procedure return a value indicating
which state the process should go to. Directly after the call statement the
program must create a decision that branches on this value and then goes
to the correct state. (Note that this would introduce a new violation of the
decision rule).

The program gave the user three ways of removing connections:

1 Expand all occurrences of the connection

2 Expand only selected occurrences

3 Turn the connection into a procedure

For lack of time, transformation into procedures was only implemented
for connections with single return points. Below is an example of a con-
nection ‘SubA’, both expanded and transformed into a procedure.

Figure 5.12 The join to the connection, before transformation

CB < 2

PhaseA_T SubA

True

False

The Experiment

64 Restructuring SDL to improve readability

Figure 5.13 The definition of the connection subA

Figure 5.14 The connection expanded into the process

SubA

CB := 1;

Terminate

IDLE

CB < 2

CB := 1;

Terminate

IDLEPhaseA_T

False

True

Implementation of the rules

Restructuring SDL to improve readability 65

Figure 5.15 The join transformed into a procedure call and a nextstate symbol

Figure 5.16 The generated procedure suba

CB < 2

suba

IDLEPhaseA_T

False

True

CB := 1;

Terminate

Procedure suba

The Experiment

66 Restructuring SDL to improve readability

Correctness of the rules

To feel safe that the rules does not destroy the semantics of a document, it
should be proven that all the rules are semantic-preserving. For most of
the rules, this is trivial, since they only alter CIF statements. In PR/CIF,
the CIF statements are written as SDL comments, which means that they
have no impact on the SDL semantics.

State/nextstate, source and destination, and signal parameters only
change CIF statements, and must therefore be semantic-preserving.

Control flow and meaningful names does not alter the SDL at all, as they
only issue warnings to the user. If fully implemented, however, the rules
would have altered the semantics and would have needed to be proven
correct.

The only rule that does change the semantics is connections. Expansion
of connections, or transformation into a procedure do change the seman-
tic of a SDL description.

An expansion of a connection results in equivalent semantics, since the
join symbol is just shorthand for writing the whole connection. (See page
76, “Join”, in Z.100 [ITU93])

Replacing a connection with a procedure does indeed alter the semantics.
However, when the transformation is described as an expansion and a
procedure creation, the equivalence is clear. The steps in the transforma-
tion is as follows:

Precondition: All the nextstates in the connection goes to the same state.

1 Expand the connection. (See Figure 5.14.) Proven correctness
preserving above.

2 Create a new procedure with all the expanded symbols, and change the
nextstate in this procedure to a return symbol. (See figure Figure 5.16)
This step does not alter the semantics of the process, as it just creates a
procedure that is not used (yet).

Repeated application

Restructuring SDL to improve readability 67

3 Replace all the expanded symbols, except the nextstate, with a
procedure call to the procedure created in step 2. Add a reference to
the procedure. (See Figure 5.15.)

The procedure call, execution, return and nextstate results in the exact
same behaviour as the expanded connection. The procedure call just
transfers the execution to the procedure. (See page 81, “Procedure call”,
in Z.100 [ITU93].) Since the procedure contains the same symbols as the
expanded connection the execution will behave in the same way. The
return symbol just transfers the execution back, to the first symbol below
the procedure call. This is the nextstate symbol, pointing to the sam state
as the ones in the expanded connection. (See page 71, “Return”, in Z.100
[ITU93].)

This should make it clear that the call to the procedure and the nexstate is
equivalent to the expanded connection, and therefore is correctness-pre-
serving.

Repeated application

Some optimizing transformations can provide better results if they are
applied multiple times. For example, some compression algorithms can
be run on already compressed data to compress it even more.

In principle. my program will not improve the results with repeated appli-
cation. All problems are resolved once and for all, and a second run
should not find any problems to deal with.

The sole exception is if a connection that is transformed into a procedure
contains connections itself. Normally, nested connections is not a prob-
lem, but if the connection is turned into a procedurebefore connections
inside it are expanded, these connections will be put in a separate file, and
not treated by the program. In the context of the procedure, these connec-
tions will be undefined.

The Experiment

68 Restructuring SDL to improve readability

Figure 5.17 An example of nested connections

Figure 5.18 A generated procedure with an undefined connection

To avoid this, it might be necessary to run the program twice. First, treat
all connections except the outer connection. In the second run, turn this
connection into a procedure.

SubA

IDLE

SubB

Z := 1;

IDLE

X Y

SubB

Procedure suba

X Y

SubB

Repeated application

Restructuring SDL to improve readability 69

Figure 5.19 The connection, with the inner connection expanded

Figure 5.20 The procedure, correctly generated

SubA

IDLE

X Y

Z := 1;

IDLE

Procedure suba

X Y

Z := 1;

The Experiment

70 Restructuring SDL to improve readability

Restructuring SDL to improve readability 71

C H A P T E R

6
CHAPTER6THE TEST CASE

Background

Since my program worked on the toy example, I knew that the approach
worked in theory, and at least under ideal conditions. But of course, that
did not prove that it would be usable in the real world. To test my pro-
gram on a real-life example, I got hold of some SDL diagrams from the
T.30 project in Ericsson.

The T.30 project made a design for a fax machine from the facsimile
standard from ITU, T.30 [ITU93]. One interesting aspect of the project
was that it used a transformational approach to generate SDL descrip-
tions from the flowcharts in the standard. These flowcharts were action-
oriented rather than state-oriented. Normally, action-oriented flowcharts
does not translate well into SDL. In addition, the flowcharts used refer-
ences (which translates into SDL connections) extensively.

Another interesting fact about the T.30 standard is that it is old. The his-
tory of ITU (CCITT before 1993) fax standards goes all the way back to
1968, with the T.2 standard. In 1980, the T.30 standard was introduced to
replace the T.2 and T.3. The current version of T.30 is from 1993, and is
just a update to the 1980 version. This means that the standard has gone
through several cycles of maintenance and redevelopment, and probably
have degraded structure, like Lehman’s second law predicts (see “His-

The Test Case

72 Restructuring SDL to improve readability

tory” on page 13). It would be interesting to see if an automatic transfor-
mation could make the descriptions more readable and maintainable.

The document I chose to work on was the description of Process phase,
the top-most description of the fax behaviour. The original document is
enclosed as Appendix C. The result after usingtransformer.pl on the
SDL is enclosed as Appendix D.

New problems and solutions

As was expected, the T.30 diagrams introduced problems that the pro-
gram was not prepared to handle. Mostly, these problems could be solved
by adding more error handling in the procedures, but in two cases, invisi-
ble joins and overflow, new procedures had to be added to the program.
All this made the program grow by nearly 50%. (From 805 lines in the
version that handled the toy example to 1176 lines in the final version).

Invisible joins

Invisible joins are joins that do not use the join symbol, just a line with an
arrow to the connection point. This is definitely not aesthetically pleasing
or easy to read, from my point of view. Before I started working on proc-
ess phase, had not even considered invisible joins as a problem. Fortu-
nately, invisible joins are not much more difficult to expand than regular
joins.

Figure 6.1 Example of invisible (graphical) join

*

PIN
(DISData)

PIP
(DISData)

RESET(T4Timer)

New problems and solutions

Restructuring SDL to improve readability 73

The CIF code for the invisible join in Figure 6.1 will look like this:

input PIN
(DISData);
/* CIF Line (750,550),(750,650) */
/* CIF Label Invisible */
grst17:
.....
input PIP
(DISData);
/* CIF Line (1050,550),(1050,575),(750,575)*/
/* CIF Join Invisible */
join grst17;

Unfortunately, I think, the CIF standard also allows joining flowlines
without using the join statement. The only clue for the program to find
these joins is that one flowline ends without a proper statement, and that
the line points to another line:

input PIN
(DISData);
/* CIF Line (750,550),(750,650) */
......
input PIP
(DISData);
/* CIF Line (1050,550),(1050,575),(750,575)*/

Then the join point must be found by looking at the coordinates of the
joining line.

The removal of invisible joins could have been done inside the procedure
that handled connections, but since the approach for invisible joins were
a little bit different, I put it in a separate procedure.

The tactic was simple: on all “join invisible” statements, insert all the
statements from the join point to the next nextstate or join. An example of
a expanded join is shown in Figure 6.3.

Only expansion of joins with “proper” CIF statements was implemented.
To expand the joins only specified by an arrow, the program would have

The Test Case

74 Restructuring SDL to improve readability

to find the join point by the coordinates, a slightly more complex
approach. Being a little short on time, I figured that the removal of well-
specified joins would be enough to show the effect it would have on read-
ability.

Overflow

In the toy example, the expansion of the connection created no overflow
problems. But in process phase things were not so simple. Connections
with branches became to wide and overwrote the flow to the right, or
came beneath it and created trouble for the
nextstate-alignment-algorithm.

Figure 6.2 The result of expansion of an invisible join without overflow fixing

To remedy the overflow problem I had to create a new procedure,
resolvePageOverflow , that checked all the pages after connection expan-
sion. If the page contained too many flowlines, the excess flowlines were
put on a new page. The procedure also shifted flows sideways.

*

PIN
(DISData)

PIP
(DISData)

Process phase AllState(15)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

0
1

2

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

0
1

2

New problems and solutions

Restructuring SDL to improve readability 75

Figure 6.3 The state after expansion and applyingresolvePageOverflow

Misplaced state symbols

For some reason, I had forgotten to check for misplaced state symbols,
despite the fact that rule number one targeted exactly that. An example of
a misplaced state symbol is shown in Figure 6.4. I did have a procedure
to align newly created pages, but I had not thought of applying it to all
pages.

*

PIN
(DISData)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

PIP
(DISData)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

0
1

2
0

1
2

Process phase Allstate (24)

The Test Case

76 Restructuring SDL to improve readability

Figure 6.4 A misplaced state symbol

Instead of just aligning generated pages, thealignPages procedure was
used on all pages. The procedure moved the state symbol to the upper left
corner (coordinates 300,100). If necessary, the procedure also shuffled
the rest of the symbols to make the first input symbol appear 250 pixels
directly below the state symbol. An example of a correctly placed state
symbol is shown in Figure 6.3.

Long variable and signal names

The identifier names were considerably longer in the T.30 test case than
in the toy example, and often went past the symbol borders. If two flow-
lines were too close together, the names would overwrite each other. It
was obvious that the spacing between flowlines had to be increased, and
that it should be possible to adjust to the diagrams in question.

Figure 6.5 Overlapping signal names

*

PIN
(DISData)

PIP
(DISData)

Allstate (24)Process phase

DTC
(DisData)

RESET(T1Timer)

RESET(T4Timer)

DIS
(DisData)

PhaseCopyDis_T

RESET(T1Timer)

Still unsolved problems

Restructuring SDL to improve readability 77

Fortunately, this problem could be solved by theresolvePageOverflow

procedure. I simply added a preference variable in the beginning of the
program so that the spacing between flowlines could be adjusted to cater
for the longest variables in the diagram.

Empty pages after expansion

If a page contained only a connection definition, the page would become
empty if the connection was expanded (and the definition deleted). Since
this did not occur in the toy example, I had not thought of this problem at
all.

A small and simple procedure was added to delete pages that had become
empty. The procedure checked if the pages had content or not, and if not,
deleted the pagebreak and the page declaration.

Still unsolved problems

Because I only had a limited amount of time available for the program-
ming, I had to stop the development of the program before all problems
were solved. The problems I left unsolved were mostly those that would
require a more advanced understanding of the SDL file.

Misplaced comments

In my toy example, the comments were conveniently placed where they
could not cause any problems for the other symbols. In process phase,
however, I encountered two placements of comments that caused prob-
lems:

1 Comments above the state symbol:
When the state symbol was moved to the top of the page, these
comments would disappear above the page.

2 Comments below join symbols:
When the joins were expanded, the comments would overlap with the
new symbols. An example of this can be seen on page 143.

The Test Case

78 Restructuring SDL to improve readability

The solution to this problem would have to be radically different than the
other procedures in the program, as there is no simple transformation that
can assure that a comment does not overwrite any symbols. The program
would have to search for free space large enough to place a given symbol,
and the program I made has no notion of “size” or “free space”.

Overflow inside decisions

Unfortunately, theResolvePageOverflow procedure only realigns whole
flows, from the input symbol to the nextstate/join symbol(s). The proce-
dure does not check for overflow inside decisions, which may occur if
joins inside the decisions are expanded. An example of this is shown in
Figure 6.6. This will also cause overlapping of long names to be left unat-
tended if they appear inside decisions.

Figure 6.6 A (constructed) example of overflow within a decision

DIS
(DisData)

RESET(T4Timer)

CompTries=3

DCN
(DisData) VIA g

false

true

Wait_CFR

PhaseDisc

bChoice

NumPages >0

true

false

true

false

idle
R_refWait_CFR

Response from the T.30 team

Restructuring SDL to improve readability 79

To solve this problem, theresolvePageOverflow procedure would have to
be changed to also adjust the spacing between the flowlines inside deci-
sions. This could be done within the current framework of the program
by counting the number of nextstates/joins below decisions, and space
the alternatives accordingly. For example, in Figure 6.6, the “true” branch
of decision “Comptries=3” would be moved two “units” to the right,
because there are three nextstates or joins below it.

A nicer approach would be to make the procedure recursive, so that the
innermost decision was resolved first, and then the outer decisions. In
that case, the “Numpages>3” decision in Figure 6.6 would be handled
first, and its branches would take the two first spaces. The “false” branch
of “bChoice” would then be moved to the right, to space number three.

Response from the T.30 team

The original and transformed SDL diagrams (effectively, appendix C and
D) were sent to two members of the T.30 team. After a few weeks, I had a
meeting with one of the developers. Our conversation revealed that he
thought the program had really improved the readability of the diagrams.

He was most pleased with the alignment of nextstates and increased
space between the flowlines. He also thought the removal of connections
helped readability, especially when the connections were made into pro-
cedures.

He was sceptical of the expansion of connections in the diagrams, for two
reasons. Firstly, the names of the connections disappeared. The names
were important, because they corresponded to names in the T.30 stand-
ard. This was a typical case of restructuring destroying meaningful infor-
mation, as described by Calliss (see “Problems with restructuring /
Program transformation” on page 32). The developer proposed that the
program should create comments with the name of the connection at the
place of expansion.

Secondly, the expansion of connections, both regular and invisible, cre-
ated much duplicate code. The developer would rather have a function

The Test Case

80 Restructuring SDL to improve readability

that detected duplicate code and created procedures, to reduce redundant
code.

All in all, the developer was quite satisfied with the results, but would
like to see some improvements before using the program in his work.

Restructuring SDL to improve readability 81

C H A P T E R

7
CHAPTER7RESULTS & FURTHER WORK

Results

My literature studies, the development of the transformational program,
and the use of it on the test case provided me with a lot of new experience
and insight. In the first part of this chapter the concrete results will be
presented. The results also revealed that there are still a lot of things that
could be done to improve on my work. In the second part of this chapter,
I will present some areas that could benefit from more work.

The dictionary

Work on the dictionary began before any of the other parts of this thesis,
as a domain analysis of software maintenance. During the writing of the
thesis, it was supplemented with terms used in the thesis. As of now, it
comprises over 60 definitions, and constitutes a fairly comprehensive dic-
tionary for reengineering and maintenance.

The literature study

My study of the reengineering literature resulted in the writing of Chapter
2, “An Introduction to Reengineering”. Others, particularly Robert
Arnold [Arnold93], have written better introductions to reengineering,

Results & Further Work

82 Restructuring SDL to improve readability

but together with the dictionary, I think this chapter can be a genuine help
to someone new to the field.

Connecting transformation to pretty printing

Theoretically, there are no problems with using program transformation
to improve a program’s readability, instead of the usual goal: efficiency. It
is just a case of making the transformational rules identify undersireable
constructs in their left-sides, and providing an equivalent, but more read-
able solution in their right-sides. In fact, program transformation has
potential to improve the readability and maintainability more deeply than
traditional pretty printing, since transformation can change the design
and organization of a program, not just its layout.

The rules

It turned out to be more difficult than expected to produce interesting
rules that could be applied automatically.

This stems from the fundamental problem with automatic restructuring -
to add meaning you need human input. This fact is reflected in the rules,
all the correctable errors concern graphical details, and are close to trivial
to correct. All the rules that would make the design of the SDL better are
merely detectable or just not detectable. The most interesting rule in my
program, the one about connections, needs a human to tell it what to do.

The program

There were no major design problems in makingtransformer.pl . The
problem was the ever-increasing complexity and workload required to
make the program able to read SDL written in all kinds of ways. To deal
with less-than-perfect (or flat out wrong) SDL, the program needed a
substantial amount of error handling code. To cater for the quirks of the
test case, the program size increased by nearly 50%. This shows that the
program was not (and probably still is not) very robust.

The complexity of my program would probably have been significantly
less if a parsing approach had been used instead of string matching. A

Further work

Restructuring SDL to improve readability 83

large part of the program logic is concerned with searching back and
forth in the file to find the beginning and end of different constructs. If the
SDL had been parsed into an abstract syntax tree or mapped to an object
oriented model, this would have been avoided. Nevertheless, the feasibil-
ity of making a readability-enhancing program based on transformational
principles should be clear to the reader.

The Test Case -Improvement in readability

Generally, the developer I talked with on the T.30 project was quite satis-
fied with the improved readability of the diagrams.

He was pleased with the alignment of nextstates and increased space
between the flowlines, and also with the transformation of connections
into procedures.

He was sceptical of the expansion of connections in the diagrams, for two
reasons. Firstly, the names of the connections disappeared. Secondly, the
expansion of connections, both regular and invisible, created much dupli-
cate code.

Further work

As with all other human projects, time was a limiting factor on the work I
did on this thesis. With more time, both the quantity and quality could
have been improved. There are at least three subjects which could benefit
from more work.

Empirical testing of SDL readability

A fundamental question to answer is “which SDL constructs are actually
most easy to read?” The rules used in this thesis are either taken form
Bræk and Haugen’s book [Bræk93] or made up by me, and none of those
are based on empirical studies.

A good example of a study of readability was made by Soloway, Sonar
and Erlich in 1983 [Soloway83]. They studied which looping constructs

Results & Further Work

84 Restructuring SDL to improve readability

(in Pascal) was most easy to read. They made 280 Pascal programmers,
some novices, some experienced, create a textual plan for a program and
then code it with their favourite construct. Soloway et. al. found that the
programmers that used Pascal constructs that closely matched their men-
tal image made fewer errors. They also found that the default Pascal con-
structs did not match the “natural” thinking of the novices. Studies like
this on SDL constructs would be very useful in determining how SDL
layout should be.

Improve transformer.pl

As it is today, my program is too unfinished to be used for anything but
experimentation. But if the program was improved, it could become a
useful tool for developers. Things that needs to be done:

• resolvePageOverflow must work inside decisions
This procedure is not able to adjust the spacing in the flow below a
decision (see “Overflow inside decisions” on page 78). This aspect
must be changed to make the program generally usable.

• Better sensing of overlap and free space
Today, the program has no notion of “free space”, only of the relative
placements of symbols. To be able to move comments that overlaps
with other symbols, or insert new comments, this feature must be
implemented (see “Misplaced comments” on page 77).

• Beautifying of decisions
For the spacing algorithm to work correctly, decisions need to have
their alternatives directly below or to the right, as described in
“decision layout”, page 49. This rule has not been implemented in the
program, but that must be done in order to make the program work
satisfactory on most SDL.

• Creation of procedures for connections with multiple returns
The program should absolutely be able to create procedures of
connections with more than one nextstate (see page 63).

• Changing of cryptic names, by user input
When the program finds a cryptic name, the user should be have the
opportunity of supplying a better name. All occurrences of the name
should then be replaced by the better one.

Further work

Restructuring SDL to improve readability 85

• Option to create comments where the connections are expanded
If the user wants it, the program should insert a comment where it
expands a connection. The comment could be supplied by the user, or
it could be the name of the connection.

Spread my results to the industry

It is fairly obvious that my program can’t make a large impact on how
developers work with SDL. That is far more likely to happen if the com-
mercial tool developers started using the rules from this paper in their
programs. A good way to spread my results is to send this paper (or just
maybe an email) to Telelogic, Verilog, and Cinderella. Telelogic already
has a pretty good tool for restructuring SDL diagrams, and could improve
it by implementing the rules presented in this thesis.

Results & Further Work

86 Restructuring SDL to improve readability

Restructuring SDL to improve readability 87

C H A P T E R

8
CHAPTER8CONCLUSION

Goal accomplishment

The objective of this thesis was to show that it is feasible to automatically
restructure SDL to achieve better readability, and to support this activity
with theory from program transformation. This has mainly been
achieved.

I have pointed out that program transformation of syntax and semantics,
as well as layout, can be used to improve readability.

I have presented a collection of rules for readable SDL. Unfortunately,
only a minority of the rules can be enforced automatically. Still, the set of
rules is large enough be used in an experiment.

To test the applicability of these rules, I created a prototype program. The
program was built upon transformational principles, with the rules pro-
grammed as different procedures.

The program worked fine on a constructed example, but ran into some
problems on an example from real life. Obviously, the program needs
more work to be of any practical use.

Conclusion

88 Restructuring SDL to improve readability

Lessons learned

Through the work on this thesis, I have learned a lot, about the reengi-
neering field, and about doing scientific work.

I got my views confirmed that meaningful information can only be added
by humans, not machines. I did hope that my program would make the
SDL descriptions much more readable, but most of the interesting rules
were too dependent on subjective judgement to be enforced automati-
cally.

I also got a strong indication of the limits of string matching for transfor-
mation. My program worked fine for smaller substitutions, and to some
degree on replacing join symbols with the complete connection. But the
program ran into trouble with larger, more complex structures, like
nested decisions. Here. a parsing approach would have been much more
appropriate.

In the later stages of my work, with time running out, I have regretted
that I used so much time in getting to know the field and working on the
TTM3 project at Ericsson. If I had started the work ontransformer.pl

earlier, the program would have been much more complete by now. But
on a grander scale, I see that the experience from the literature study and
the real world project may be more valuable to me later than the experi-
ence in writing perl scripts.

Restructuring SDL to improve readability 89

C H A P T E R

9
CHAPTER9REFERENCES

[Arnold89] Arnold, R. S.
Article: Software Restructuring
IEEE Proceedings, vol. 77, no. 4, pp. 607-617, 1989

[Arnold93] Arnold, R. S.
Book: Software Reengineering
IEEE Computer Society Press, 1993

[Arthur88] Arthur, L.J.
Book: Software Evolution: the Maintenance Challenge
John Wiley & Sons, Inc., 1988

[Belzer85] Belzer, R.
Article: A 15 year perspective on Automatic Programming
IEEE Transactions on Software Engineering, vol. 11, no. 11, 1985

[Biggerstaff89] Biggerstaff, T.J.
Article: Design Recovery for Maintenance and Reuse
IEEE Computer, vol. 22, no. 7, pp. 36-49, July 1989

[Boyle84] Boyle, J, M. & Muralidharan, M. N.
Article: Program Reusability through Program Transformation
IEEE Transactions on Software Engineering, vol. 10, no. 5, 1984

References

90 Restructuring SDL to improve readability

[Brodie95] Brodie, M. L. & Stonebraker, M.
Book: Migrating Legacy Systems: Gateways, Interfaces and
the Incremental Approach
Morgan-Kaufmann Publishers, 1995

[Bræk93] Bræk, R. & Haugen, H.
Book: Engineering Real Time Systems - an object-oriented methodology
using SDL
Prentice Hall International, 1993

[Böhm66] Böhm, C. & Jaccopini, G.
Article: Flow diagrams, Turing Machines and Languages with only two
transformational Rules
CACM, vol. 9, no. 5, pp. 366-371, 1966

[Calliss88] Calliss, F.
Article: Problems with automatic restructurers
ACM SIGPLAN notices, vol. 23, no. 3, 1988

[Chikofsky90] Chikofsky, E. J. & Cross, J. H. III
Article: Reverse Engineering and Design Recovery: A Taxonomy
IEE Software, vol. 7, no. 1, pp. 13-17, 1990

[Chu93] Chu, W.
Article: A Reengineering Approach to Program Translation
Proceedings, IEEE Conference on Software Maintenance, pp. 42-50,
1993

[Corbi90] Corbi, T.A.
Article: Program Understanding: Challenge for the 90s
IBM Systems Journal, vol. 28, no. 2, pp. 294-306, 1989

[DOMIS96] Surer, S. L. et. al.
Online paper: Distributed Object Management Integration Systems
(DOMIS) FY96 final report
URL: http://www.mitre.org/research/domis/reports.html

MITRE, Center For Integrated Intelligence Systems, 1996.

Restructuring SDL to improve readability 91

[Ellsberger97] Ellsberger, J. et. al.
Book: SDL. Formal Object-Oriented Language for
Communicating Systems
Prentice Hall Europe, 1997

[Hallstein89] Hallstein, S.O. et. al.
Article: Transformational Program Development -An Approach for
Translating SDL to CHILL
Proceedings, SDL 89 - The Language at Work
North-Holland, 1989

[IEEE83] Institute of Electrical and Electronics Engineers
Standards paper: ANSI/IEEE std 729-1983 -IEEE Standard Glossary of
Software Engineering Terminology
IEEE, 1983

[IEEE93] Institute of Electrical and Electronics Engineers
Standards paper: IEEE STD 1219-1993 -Standard for Software
Maintenance
IEEE, 1993

[FAMOOS98] FAMOOS (Espirit project 21975)
Online article: SCG / FAMOOS / Candidate Reengineering Patterns
URL: http://www.iam.unibe.ch/~famoos/

Framework-based Approach for Mastering Object Oriented Software
evolution, 1998

[Ganti95] Ganti, N. & Brayman, W.
Book: The Transition of Legacy Systems to an Distributed Architecture
John Wiley & Sons, 1995

[ISO92] International Organization for Standardization
Standards paper: Information Technology: software product evaluation:
quality characteristics and guidelines for their use
ISO, 1992

References

92 Restructuring SDL to improve readability

[ITU93] International Telecommunications Union
Standards paper: Recommendation Z.100
-CCITT Specification and description language (SDL)
ITU, 1993

[ITU96] International Telecommunications Union
Standards paper: Recommendation Z.106
- Common interchange format for SDL
ITU, 1996

[Jacobson91] Jacobson, I. & Lindström, F.
Article: Re-engineering of Old Systems to an Object Oriented Architec-
ture
Proceedings, OOPSLA, pp. 340-350, 1991

[Kozaczynski92] Kozaczynski, W. et. al.
Article: Program Concept Recognition and Transformation
IEEE Transactions on Software Engineering, vol.18, no.12, pp.1065-
1075, 1992

[Lano94] Lano, K. & Haughton, H.
Reverse Engineering and Software Maintenance
Mc Graw-Hill Book Company Europe, 1994

[Lehman80] Lehman, M.
Article: Programs, Life Cycles, and the Laws of Software Evolution
IEEE Proceedings, vol. 68 no.9 pp. 1060-1076, 1980

[Letovsky86] Letovsky, S. & Soloway, E.
Article: Delocalized PLans and Program Comprehension
IEEE Software vol. 3 no.3?, may 1986

[Miller87] Miller, J.C., & Strauss, R. M. III
Article: Implications of automatic restructuring of COBOL
ACM SIGPLAN notices, vol. 22, no. 6, 1987

Restructuring SDL to improve readability 93

[McCabe] McCabe, T.J.
Article: A complexity measure
IEEE Transactions on Software Engineering, vol.2, no.4, pp.308-320,
1976

[Olsen94] Olsen, A. et. al.
Book: Systems Engineering using SDL-92
North Holland, 1994

[Patterson94] Patterson, D.A. & Hennesy, J.L.
Book: Computer Organization & Design - the Hardware/Software
Interface
Morgan Kaufmann Publishers, Inc., 1994

[Pfleeger98] Pfleeger, S.L.
Article: The Nature of System Change
IEEE Software, vol. 15 no. 3 pp. 87-90, 1998

[RENAISSANSE98] RENAISSANCE Consortium
Online paper: RENAISSANCE Framework
URL: http://www.comp.lancs.ac.uk/projects/renaissance/project/

Documents/Method_Framework/MethodFramework.html

RENAISSANCE Consortium, 1997

[Rich90] Rich, C. & Wills, L.M.
Article: Recognizing a Program’s Design: A Graph-Parsing Approach
IEEE Software vol.7 no.1 pp. 82-89, 1990

[SINTEF98] Stiftelsen for Industriell og Teknologisk Forskning ved NTH
TIMe Electronic Textbook -Combined Dictionary for TIMe and COP.
SINTEF, 1998

[Sneed87] Sneed, H.M. & Jandrasics, G.
Article: Software Recycling
Proceedings. Conference. on Software Maintenance, pp.82-90, 1987

[Sneed95] Sneed, H. M.
Article: Planning the Reengineering of Legacy Systems
IEEE Software, vol. 12 no.1, 1995

References

94 Restructuring SDL to improve readability

[SRI95] Software Reuse Institute
Online article: SRI Reuse Glossary
URL: http://sw-eng.falls-church.va.us/ReuseIC/pubs /
SRI, 1995

[Stevens98] Stevens, P. & Pooley, R.
Online article: Systems reengineering patterns
URL: http://www.fzi.de/ECOOP98/submissons/

ecoop98-stevens-pooley.ps

ECOOP Workshop on Experiences in Object Oriented Reengineering,
1998

[Ward95] Ward, M.
Article: A Definition of Abstraction
Journal of Software Maintenance: Research and Practice, vol. 7, no. 6,
pp. 443-450, 1995

[Zuylen93] van Zuylen, H. J.
Book: The REDO compendium, Reverse Engineering for Software
Maintenance
John Wiley & Sons, 1993

Restructuring SDL to improve readability 95

A P P E N D I X

A
APPENDIX0DICTIONARY

Abstract Syntax Tree (AST)
An abstract syntax tree is a tree in which each inner node represents an
operator and each leaf node represents an operand. Superficial distinc-
tions of form do not appear in syntax trees, and places ASTs on a higher
level of abstraction than source code.

Figure A.1 The AST for a + max(b,c)

Abstraction
Informal: A general description, without details, of a problem, computer
program, or system. Formal: A program S1 is an abstraction of another
program S2 if each possible execution sequence for S1 consists of a sub-
sequence of a possible execution for S2 [Ward95]. (Meaning that S1 has
fewer states than S2, and all states in S1 is contained in S2.)

+

a max

b c

Appendix A

96 Restructuring SDL to improve readability

Adaptive maintenance
Maintenance activities undertaken to adapt a software system to a
changed environment [IEEE83]. This includes maintenance as a conse-
quence of changed hardware, software, business rules, government poli-
cies, or users requirements.

Application design
(Detailed) specification of the organization of the program(s) that consti-
tutes the software of the computer system. This can include module parti-
tioning, object design, and descriptions of algorithms.

Application generator
A type of tool that uses software designs and/or requirements to generate
at least partial software applications automatically, such as program
source code and program control statements [SRI95].

Architecture
An architecture is an abstraction of a concrete system representing:

• the overall structure of hardware identifying at least all physical nodes
and interconnections needed to implement an abstract system.

• the overall structure of software identifying at least all software nodes,
software communications and relations needed to implement an
abstract system (in terms of processes, procedures and data)
[SINTEF98].

Architectural design
The process og designing the architecture of a system.

BNF
The Backus-Naur Form (BNF) is a convenient means for writing down
the grammar of a context-free language. It is compiled of a very simple
structure that is similar to: “<left term> ::= right-hand side ”.
This means that the left term side is defined by the right hand side. The
symbol in the middle, ::=, is known as the meta-symbol. Terms enclosed
in less-than and greater-than signs have definitions to explain them.
These terms are called non-terminals.

Dictionary

Restructuring SDL to improve readability 97

CCITT
Consultative Committee on International Telephony and Telegraphy. In
1993, CCITT changed its name to ITU.

CIF
Common Interchange Format. A text-only format for describing layout of
SDL diagrams. Specified by ITU in the Z.106 standard [ITU92].

CHILL
CCITT HIgh Level Language. A third generation language, most com-
monly used in the telecom industry. CHILL is specified by ITU in the
Z.200 standard.

COBOL
A third generation language, most commonly used in administrative
computing. COBOL was most popular in the 60s and 70s, but many of
these systems are still in use. That makes COBOL systems interesting
candidates for reengineering.

Compilation
The generation of assembler or machine code from source code.

Compiler
The program that performs compilation.

Computer program
A sequence of instructions suitable for processing by a computer
[IEEE83].

Computer system
A functional unit, consisting of one or more computers and associated
software, that uses common storage for all or part of a program and also
for all or part of the data necessary for the execution of the program
[IEEE83].

Code generator
Synonym for source code generator [SRI95].

Conversion
Used as synonym for program transformation.

Appendix A

98 Restructuring SDL to improve readability

Corrective maintenance
Maintenance performed specifically to overcome existing faults
[IEEE83]. Faults can have been introduced at any stage in the develop-
ment of the software. Therefore “faults” includes design faults, logic
faults and coding faults. Requirements faults usually have too large an
impact on the system to be solved by corrective maintenance, often a
complete reengineering of the system is necessary.

De-compilation
The generation of source code from machine code.

Design
The process of defining the software architecture, components, modules,
interfaces, test approach, and data for a software system to satisfy speci-
fied requirements [IEEE83].

Design recovery
The recreation of design abstractions from a combination of source code,
existing design documentation (if available), personal experience, and
general knowledge about problem and application domains
[Biggerstaff89].

Dynamic analysis
The process of evaluating a program based on execution of the program
[IEEE83]. In a manual approach, one often read debug messages and try
to trace the influence on output variables. Dynamic analysis tools often
can discover memory leaks, processing bottlenecks and produce func-
tional specifications.

Existing code
The source code of the running computer system. This code may or may
not be old code.

Forward engineering, software development
The traditional process of moving from high-level abstractions and logi-
cal, implementation independent designs to the physical implementations
of the system [Chikofsky90].

Dictionary

Restructuring SDL to improve readability 99

Functional requirements
Requirements that specify functions that a system or system component
must be capable of performing [IEEE83].

Functional specification
A specification that defines the functions that a system or system compo-
nent must perform [IEEE83].

Implementation
A machine executable form of a program, or a form of a program that can
be translated automatically to machine readable form [IEEE83]. Both the
source code and the machine code are considered part of the implementa-
tion.

Inverse engineering
The production of a functional specification from source code or machine
code.

ITU
International Telecommunications Union. Specifies standards for interna-
tional telecom, but also for some programming languages, such as SDL
and CHILL.

Legacy system
Large (e.g. 10 million lines of source code), geriatric (e.g. more than 10
years old), and business critical systems [Brodie93]. A legacy system is
usually very important to the organization, and very complex, or else it
would have been replaced long ago. Legacy systems are often the target
of software recycling and software salvaging.

Levels of abstraction
Documents at the same level of abstraction are roughly equally abstract
relative to the system implementation. It’s normal to recognize four levels
of abstraction: Requirements, design, functional specification, and imple-
mentation, in descending order of abstraction.

Machine code
The program, coded as instructions directly executable by a computer
[IEEE83].

Appendix A

100 Restructuring SDL to improve readability

Maintenance personnel
The people responsible for keeping the system running, as well as devel-
oping it further. In short, they do software maintenance on the system.

Management
The people in charge of the organization using the computer system.
Management makes guidelines for the users’ work process, and deter-
mines what the maintenance personnel should do on the system.

Module
A part of the system with defined boundaries [SINTEF98].

Non-functional properties
A non-functional property is a property which is not measurable in an
abstract system. The non-functional properties can be related to the han-
dling of abstract systems, for instance that they are flexible. More often
they are related to the concrete system, and express physical properties
such as size, weight and temperature. Performance, real-time responses
and reliability are considered to be non-functional properties in TIMe,
since they cannot be measured in the abstract systems [SINTEF98].

Non-functional requirements
Requirements and constraints on the system’s non-functional properties.

Old code
Existing code that cannot be easily understood, redesigned, modified or
rewritten [Corbi89]. Old code isn’t necessarily old of age, just written in
a complex and incomprehensible way.

Perfective maintenance
Maintenance performed to improve performance, maintainability, or
other software attributes [IEEE83]. This includes adding extra function-
ality to the system and improving system performance.

Preventive maintenance is an important subgroup of perfective mainte-
nance. Preventive maintenance is undertaken to make a system easier to
maintain at a later stage. This includes all kinds of restructuring, both of
code and design.

Dictionary

Restructuring SDL to improve readability 101

PR
Prose Representation. Textual representation of SDL. Often accompanied
by CIF statements to describe a graphical SDL diagram, in a PR/CIF file.

Program slicing
The production of an extraction of the source code, with respect to the
statements affecting a selected set of variables [Lano94]. This is done to
ease the reading of the (interesting) source code, and to discover possible
ripple effects.

Program transformation, program translation
The transformation of a program is viewed as a process of rewriting one
program into another by repeated application of a set of transformation
rules. A transformation rule has a left-side pattern, a right side pattern,
and possibly some transformation conditions [Kozaczynski92].

Usually, source code is transformed into different, but semantically
equivalent, source code. Transformation can be used in reverse engineer-
ing or forward engineering.

Program transliteration
To translate source code from one language to another, on a statement-
by-statement basis.

Program understanding
The process of understanding the source code of a program, normally
with the intention of changing it later. It’s possible to gain understanding
program both in a top-down and bottom-up manner.

Redevelopment engineering
A new development of a system’s implementation from existing require-
ments. Optionally, the design is also remade.

Redocumentation
I will use this term to mean the generation of documentation from source
code or machine code. This is a stricter definition than Chikofsky &
Cross, who say that redocumentation can be done at all levels of abstrac-
tion, and have the following definition: “The creation or revision of a

Appendix A

102 Restructuring SDL to improve readability

semantic equivalent representation within the same relative level of
abstraction” [Chikofsky90].

Reengineering
The examination and alteration of a subject system to reconstitute it in a
new form and subsequent implementation of that form [Chikofsky90].
Reengineering involves reverse engineering, optionally restructuring or
adaptation to new requirements, and a forward engineering phase. Some
well-known synonyms for reengineering, often reflecting a specific reen-
gineering purpose [Arnold93]:

• Software improvement

• Software renewal

• Software refurbishing

• Software modernization

• Software reclamation, software salvaging

• Software recycling

• Redevelopment engineering

• Reuse engineering

Some people spell reengineering with a hyphen: “re-engineering”. The
fact that there is no uniform way of spelling this central word, is a telling
example of the immaturity of the field. In this thesis, I will stick to
Chikosfky & Cross’s spelling, without a hyphen.

(Re)modularization
Changing the module structure of a system. A new division of a system
into modules often depend on analysis of systems component characteris-
tics and coupling measures [Arnold93].

Requirements
Conditions or capabilities that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed document [IEEE83]. Both functional and non-func-
tional requirements exist.

Dictionary

Restructuring SDL to improve readability 103

Requirements specification
A specification that sets forth the requirements for a system or system
component. Typically included are functional requirements, performance
requirements, interface requirements, design requirements, and develop-
ment standards [IEEE83].

Requirements recovery
The regeneration of a set of requirements for a system from the design
and other sources. This might include studying the design documentation
and interviewing experienced users and domain experts. Chikofsky &
Cross calls this process “design recovery”, but I will use the term
“requirements recovery”, to distinguish it from the recovery of system
design.

Restructuring
Reorganization or changing of the system structure. The transformation
from one representation to another at the same relative abstraction level,
while preserving the subject system’s external behaviour [Chikofsky90].
According to Chikofsky & Cross, restructuring can be done at any level
of abstraction. Redocumentation is considered restructuring at the imple-
mentation level, since it makes the source code or machine code more
comprehensible.

Reuse engineering
Reengineering with the purpose of making a system more reusable at a
later stage. Often, the system is (re)modularized or restructured to iden-
tify parts of the system that are good candidates for reuse. Reuse engi-
neering is an example of preventive maintenance.

Ripple effect
The phenomenon that a change in one part of a program affect other sec-
tions in an unpredictable fashion, thereby leading to a distortion in the
logic of the system [Takang96].

Reverse engineering
The process of analyzing a subject system to:

• Identify the system’s components and their interrelationships.

Appendix A

104 Restructuring SDL to improve readability

• Create representations of the system in another form, at a higher level
of abstraction [Chikofsky90].

Different reverse engineering activities include de-compilation, inverse
engineering, design recovery and requirements recovery.

SDL
Specification and Description Language. A programming language, used
primarily by telecom, based on the ideas of extended finite state
machines. SDL has statements and variables like all programming lan-
guages, but also has concepts of signals and processes, making it well
suited for describing reactive, realtime systems. SDL was specified by
ITU in the Z.100 standard [ITU93].

Software maintenance
Modification of a software product after delivery, to correct faults, to
improve performance or other attributes, or to adapt the product to a
modified environment [IEEE93]. Software maintenance can be divided
into three categories: corrective maintenance, perfective maintenance and
adaptive maintenance.

Software reclamation, software salvaging
Reengineering with the purpose of recovering lost information about a
(legacy) system. The goal can be to find reusable objects, modules or
subsystems (reuse engineering) or to recycle the whole design (software
recycling).

Software recycling, software renewal
Reengineering with the purpose of recycling the design of old programs
into a more modern form. According to Sneed & Jandrasics [Sneed87],
the recycling process consists of the following steps:

1 Static analysis of existing code

2 Modularization

3 Internal restructuring of new modules in a design language

4 Manual optimization and adjustment of new modules. Optionally,
adjust or extend the design to meet new requirements

Dictionary

Restructuring SDL to improve readability 105

5 Generation of new modular and structured code

Source code
The program, coded in a programming language that must be compiled,
assembled, or interpreted before being executed by a computer [IEEE83].

Source code generator
A tool that uses software requirements and/or designs to automatically
generate source code. An application generator generates entire applica-
tions, whereas a source code generator may generate smaller pieces of
source code. Synonym for code generator [SRI95].

Static analysis
The process of evaluating a program without executing the program
[IEEE83], for example analysis of the source code. Static analysis tools
often produce call graphs, and find inactive code and uninitialized varia-
bles.

System erosion, system decay
The degradation of the system as it gets older. Usually, a system’s quality
decreases, and its complexity increases after years of changes, fixes, and
adaptations made during maintenance.

Transformational system
A program that runs transformations on program descriptions.

System
Unless otherwise noted, “system” will be used as a synonym for
“compter system” in this thesis.

Users
The people that use the computer system as an aid in their work.

Appendix A

106 Restructuring SDL to improve readability

Restructuring SDL to improve readability 107

A P P E N D I X

B
APPENDIXASDL: TOY EXAMPLE

This appendix contains the SDL diagrams from the toy example I used during the development of my pro-
gram.

Appendix B

108 Restructuring SDL to improve readability

P
ro

ce
ss

 T
oy

E
xa

m
pl

e
S

ta
te

_I
D

LE
(2

)
D

C
L

Li
ne

 I
nt

8;
D

C
L

B
B

Q
 N

um
be

r;
D

C
L

C
al

le
rI

d
K

ey
;

D
C

L
C

B
 in

t8
_T

;
S

IG
N

A
L

C
al

ls
et

up
(li

ne
);

S
IG

N
A

L
C

E
D

(C
al

le
rI

d,
Li

ne
,B

B
Q

,S
el

fId
);

S
IG

N
A

L
b;

ID
LE

C
al

ls
et

up
(L

in
e)

C
E

D
(C

al
le

rI
d,

 L
in

e,
 B

B
Q

,
 S

el
fId

)
T

O
 C

en
tr

al

C
B

 <
 2

P
ha

se
A

_T
S

ub
A

C
al

lfa
x

(F
ax

N
o)

F
ro

m
: C

al
le

r

C
al

ls
et

up
(L

in
e)

V
IA

 C
en

tr
al

P
ha

se
B

_T

S
ub

A

C
B

 :=
 1

;

T
er

m
in

at
e

ID
LE

T
ru

e
F

al
se

SDL: Toy Example

Restructuring SDL to improve readability 109

P
ro

ce
ss

 T
oy

E
xa

m
pl

e
S

ta
te

_P
ha

se
A

_T
_P

ha
se

B
_T

(2
)

P
ha

se
A

_T

C
E

D
_O

K

S
et

up
_O

K
T

O
: C

al
le

r

P
ha

se
A

_T
2

T
er

m
in

at
e

T
er

m
in

at
eA

cc
(C

al
le

rI
d)

E
nd

C
al

l
T

O
 C

en
tr

al

ID
LE

D
IS

D
is

F
ou

nd
T

O
 C

en
tr

al

P
ha

se
A

_T
3

T
er

m
in

at
e

T
er

m
in

at
eA

cc
T

O
 C

en
tr

al

ID
LE

C
al

ls
et

up
,

C
al

lfa
x

C
al

ls
et

up
,

C
al

lfa
x

C
E

D
_N

O
K

S
et

up
_N

O
K

T
O

 C
al

le
r

ID
LE

C
al

ls
et

up
,

C
al

lfa
x

P
ha

se
B

_T

C
E

D
_O

K

S
et

up
_O

K

P
ha

se
B

_T
2

T
er

m
in

at
e

T
er

m
in

at
e_

O
K

E
nd

C
al

l
T

O
 C

en
tr

al

ID
LE

C
al

ls
et

up
,

C
al

lfa
x

C
al

ls
et

up
,

C
al

lfa
x

Appendix B

110 Restructuring SDL to improve readability

Restructuring SDL to improve readability 111

A P P E N D I X

C
APPENDIXASDL: PROCESS PHASE

(ORIGINAL)
This appendix contains the SDL diagrams used in the test case (Chapter 6), in their original form.

Appendix C

112 Restructuring SDL to improve readability

Process phase ProcDefs(15)

TIMER T1Timer, T2Timer, T3Timer, T4Timer, 75msecTimer;

SDL: Process Phase (Original)

Restructuring SDL to improve readability 113

Process phase ProcVars(15)

/* Fax identification.
Since Calling and Transmitting FAX are not always the same
(Called FAX may called and asked to transmitt a document)
The Following names are used:
-CalledFAX
-CallingFAX
-TransmittingFAX
-ReceivingFAX
*/

DCL PageTries integer; /* This variable is used to count how many times transmitter has tried to send a fax page */
DCL TCFTries integer;/* This variable is used to count how many times transmitter has tried to send a training sequece */
DCL RetVal,Timeouts integer; /* This variable is used to count how many times timeouts of T4timer has occured */
DCL ChangeMode boolean;
DCL CapableToReXmit boolean;
DCL bResult,bIntrusion boolean;
DCL bChoice boolean;
DCL DisData, StoredDis Dis_T;
DCL PageData PageData_T;
DCL br BaudRate_T; /* temporary storage */

DCL fifData FifArr_T;
DCL FaxCaps FaxCaps_T;
DCL kChoice Boolean;
DCL NumPages integer; /* Stores number of pages in facsimile left to send*/
DCL TlfNumber integer; /* Stores B number */
DCL CompTries integer; /* This variable is used to count how many times receiver/transkmitter has tried to become compatible*/

Appendix C

114 Restructuring SDL to improve readability

Process phase Procedures(15)

 PhaseAnswerCall PhaseCopyDis_T PhaseTransmit_PRI_Q

 PhaseSetFaxMode PhaseChangeToMSG PhasePhoneToLine

 PhaseSetModemToBCS PhaseReceiveTraining PhaseCompRemoteTransmitter

 PhaseEstablishCall PhaseChangeToBCS PhaseCompRemoteReceiver

 PhaseGetFaxMode PhaseRephase PhaseTransmittTCF

 PhaseDelay75msec PhaseCopyQualityOK PhaseTCFOk

 PhaseDisconnectLine PhaseSendFaxPage PhaseRephaseSender

 PhaseSendFaxPageToEnv PhaseFaxPageIgnore PhaseAltSpeech

SDL: Process Phase (Original)

Restructuring SDL to improve readability 115

Process phase Idle(15)

PageTries:=0

Idle

CallSetupCalled Station

PhaseGetFaxMode
(0,StoredDis,FaxCaps)

PhaseAnswerCall

CED via g

PhaseDelay75msec

PhaseSetModemToBCS

DIS
(StoredDis) VIA g

PhaseCopyDis_T
(StoredDis,DisData)

SET(now+T1Period,T1Timer)

SET(now+T4Period,T4Timer)

Timeouts:=0

PhaseB_R

CallFax
(NumPages,TlfNumber,
bIntrusion)

Calling Station

PhaseEstablishCall
(TlfNumber)

CallSetup
via k

CNG via g

PhaseDelay75msec

SET(now+T1Period,T1Timer)

PhaseB_T

InitFaxCaps
(FaxCaps)

PhaseSetFaxMode
(DisData,FaxCaps)

idle

R_ref

Appendix C

116 Restructuring SDL to improve readability

Process phase PhaseB_R1(15)

PhaseB_R respons rec

DCN
(DisData)

reset(T4Timer)

RESET(T1Timer)

PhaseDisconnectLine

Idle

CRP
(DisData)

DIS (StoredDis)
VIA g

SET(NOW+T4Period,T4Timer)

PhaseB_R

*

CNG

to let dump
people know this
is a fax call

-

CED

phoneLine

NoContinueFax

B_Ref

SDL: Process Phase (Original)

Restructuring SDL to improve readability 117

Process phase PhaseB_R2(15)

PhaseB_R

DCS
(StoredDis)

RESET(T1Timer)

RESET(T4Timer)

'A timer ? '

PhaseReceiveTraining
(bResult)

PhaseChangeToBCS

bResult=true

CFR
(StoredDis) VIA g

SET(NOW+T2Period, T2Timer)

PhaseChangeToMSG

PhaseC_R

FTT
(DisData) VIA g

SET(NOW+T2Period, T2Timer)

PhaseB_R

DTC
(DisData)

CallingFAX wants me to be
transmitting FAX

RESET(T1Timer)

RESET(T4Timer)

PageTries:=PageTries+1

NumPages:=1

D_ref

DIS
(DisData)

CallingFAX wants me to be
transmitting FAX

PhaseCopyDis_T
(StoredDis,DisData)

RESET(T1Timer)

RESET(T4Timer)

PageTries:=PageTries+1

NumPages:=2

A_ref

T1Timer

DCN
(DisData) VIA g

PhaseDisconnectLine

RESET(T4Timer)

Idle

T4Timer

Timeouts:=Timeouts+1

Timeouts=3

LOOKs optional
//ETOFLI

DIS
(DisData) VIA g

set (Now + T4Period,T4Timer)

PhaseB_R

DCN
(DisData) VIA g

RESET(T4Timer)

RESET(T1Timer)

PhaseE

true

false

False

true

Appendix C

118 Restructuring SDL to improve readability

Process phase PhaseC_R(15)

PhaseC_R

FaxPage
(PageData)

RESET(T2Timer)

FaxPage
(PageData)
TO self

PhaseChangeToBCS

PhaseB_R

SDL: Process Phase (Original)

Restructuring SDL to improve readability 119

Process phase PhaseB_T1(15)

PhaseB_T

DIS
(DisData)

RESET(T1Timer)

PhaseCopyDis_T
(StoredDis,DisData)

RESET(T2Timer)

TCFTries:=0,
CompTries:=0,
PageTries:=0

/* Used to count
tries one a single page*/

A_ref

DTC
(DisData)

T1Timer

PhaseDisconnectLine

Idle

* DCN
(DisData)

D_ref Transmitting FAX

'Set mode'

DCS
(StoredDis) VIA g

PhaseTransmittTCF

SET(NOW + T4Period,T4Timer)

TCFTries:=TCFTries+1

Wait_CFR

A_ref
This reference
i used when checking
copatible rec/trans fax

PhaseCompRemoteReceiver
(bChoice,StoredDis,FaxCaps)

CompTries:=CompTries+1

bChoice

NumPages >0

PhaseCompRemoteTransmitter
(fifData, bChoice)

bChoice

R_ref C_refD_ref

true

false

true

false

true

false

Appendix C

120 Restructuring SDL to improve readability

Process phase PhaseE(15)

PhaseE

*

Idle

IIRef

NumPages = 1

MPS
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_MultPage_T

ChangeMode

EOP
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

bIntrusion

PIP
(DISData)
VIA g

PhaseD_TPhaseD_T

EOM
(DisData) VIA g

The transmitting unit desires to
 exit from the transmitting
mode of operations and
 re-establish the capabillities.

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T //ETOFLI
Usikker ?!!

false
true

false

true

false

true

SDL: Process Phase (Original)

Restructuring SDL to improve readability 121

Process phase PhaseB_R3(15)

PhaseB_R
/* D phase */

MPS
(DisData)

RESET(T4Timer)

PhaseCopyQualityOK
(bChoice)

bChoice

PhaseRephaseSender
(bChoice)

bChoice

PhaseSendFaxPageToEnv

MCF
(DisData) VIA g

PhaseChangeToMSG

PhaseC_R

This is not exatly according to the standard
State PhaseC_R does not really exist in the standard
Is done to show all phases in a fax call

RTP
(DisData) VIA g

PhaseFaxPageIgnore

PhaseB_R

RTN
(DisData) VIA g

PhaseFaxPageIgnore

PhaseB_R

*

PhaseDisconnectLine

Idle

EOM
(DisData)

RESET(T4Timer)

PhaseCopyQualityOK
(bChoice)

bChoice

PhaseRephaseSender
(bChoice)

bChoice

PhaseSendFaxPageToEnv

MCF
(DisData) VIA g

PhaseChangeToMSG

PhaseB_R

PhaseFaxPageIgnore

RTP
(DisData) VIA g

PhaseB_R

PhaseFaxPageIgnore

RTN
(DisData) VIA g

PhaseB_R

EOP
(DisData)

FaxPage

true

false true

false

true

false

true

false

Appendix C

122 Restructuring SDL to improve readability

Process phase Wait_CFR_1(15)

Wait_CFR

CFR
(DisData)

RESET(T4Timer)

PhaseSendFaxPage

IIRef

DIS
(DisData)

RESET(T4Timer)

CompTries=3

A_ref C_ref

The T.30 protocol
states that only
3 tries can be made
to find a compatible fax
transmission mode between
calling and called fax.

DTC
(DisData)

DCN
(DisData)

PhaseDisconnectLine

Idle

FTT
(DisData)

RESET(T4Timer)

PhaseRephase
(bChoice)

bChoice

D_Ref

C_Ref

T4Timer

TCFTries=3

C_ref 'Set mode'

DCS
(DisData) VIA g

PhaseTransmittTCF

SET(NOW + T4Period,T4Timer)

TCFTries:=TCFTries+1

Wait_CFR

CRP
(DisData)

//ETOFLI
This could solve DCS/CFR crash

false

true

true
false

true
false

SDL: Process Phase (Original)

Restructuring SDL to improve readability 123

Process phase PhaseD_MultPage_T1(15)

PhaseD_MultPage_T

MCF
(DisData)

RESET(T4Timer)

NumPages:=NumPages-1

PhaseSendFaxPage

PhaseSetModemToBCS

NumPages = 1
last page has been sent

MPS
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_MultPage_T

ChangeMode=true

EOP
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T

EOM
(DisData) VIA g

The transmitting unit desires to
 exit from the transmitting
mode of operations and
 re-establish the capabillities.

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T

//ETOFLI
Usikker ?!!

RTN
(DisData)

RESET(T4Timer)

StoredDis!FifLit!BaudRateLit:=
GetLowerBr(StoredDis!FifLit!BaudRateLit)

/* try a lower baudrate */

D_ref

RTP
(DisData)

Question:
Do we resend page or not
Decision:
Resend previos page
with new capabillities

*

C_ref

T4Timer

PageTries:=PageTries+1

PageTries=3

'Set mode'

MPS
(DisData) VIA g

RESET(T4Timer)
/* //ETOFLI put this elsewhere */

Wait_CFR

NokFax via a

C_ref

CRP
(DisData)

false
true

false

true

false
true

Appendix C

124 Restructuring SDL to improve readability

Process phase PhaseD_MultPage_T2(15)

B_Ref

PhaseDisconnectLine

idle

SDL: Process Phase (Original)

Restructuring SDL to improve readability 125

Process phase AllState(15)

*

PIN
(DISData)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

PIP
(DISData)

0

1

2

Appendix C

126 Restructuring SDL to improve readability

Process phase PhaseD_T1(15)

phaseD_T Transmitting FAX in phase D

MCF
(DisData)

RESET(T4Timer)

OkFax via a

C_ref

RTP
(DisData)

RESET(T4Timer)

NokFax via a

C_ref

RTN
(DisData)

RESET(T4Timer)

CapableToReXmit = true

D_ref

NokFax via a

C_ref

*

RESET(T4Timer)

NokFax via a

C_ref

T4Timer

Timeouts:=Timeouts+1

SET(NOW + T4Period,T4Timer)

Timeouts=3

EOP
(DisData) VIA g

phaseD_T

NokFax via a

C_ref

C_ref

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

true

false

false

true

Restructuring SDL to improve readability 127

A P P E N D I X

D
APPENDIXASDL: PROCESS PHASE

(TRANSFORMED)
This appendix contains the SDL diagrams resulting from using transformer.pl on the diagrams in appendix
C.

Appendix D

128 Restructuring SDL to improve readability

Process phase ProcDefs(28)

TIMER T1Timer, T2Timer, T3Timer, T4Timer, 75msecTimer;

 d_ref

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 129

Process phase ProcVars(28)

/* Fax identification.
Since Calling and Transmitting FAX are not always the same
(Called FAX may called and asked to transmitt a document)
The Following names are used:
-CalledFAX
-CallingFAX
-TransmittingFAX
-ReceivingFAX
*/

DCL PageTries integer; /* This variable is used to count how many times transmitter has tried to send a fax page */
DCL TCFTries integer;/* This variable is used to count how many times transmitter has tried to send a training sequece */
DCL RetVal,Timeouts integer; /* This variable is used to count how many times timeouts of T4timer has occured */
DCL ChangeMode boolean;
DCL CapableToReXmit boolean;
DCL bResult,bIntrusion boolean;
DCL bChoice boolean;
DCL DisData, StoredDis Dis_T;
DCL PageData PageData_T;
DCL br BaudRate_T; /* temporary storage */

DCL fifData FifArr_T;
DCL FaxCaps FaxCaps_T;
DCL kChoice Boolean;
DCL NumPages integer; /* Stores number of pages in facsimile left to send*/
DCL TlfNumber integer; /* Stores B number */
DCL CompTries integer; /* This variable is used to count how many times receiver/transkmitter has tried to become compatible*/

Appendix D

130 Restructuring SDL to improve readability

Process phase Procedures(28)

 PhaseAnswerCall PhaseCopyDis_T PhaseTransmit_PRI_Q

 PhaseSetFaxMode PhaseChangeToMSG PhasePhoneToLine

 PhaseSetModemToBCS PhaseReceiveTraining PhaseCompRemoteTransmitter

 PhaseEstablishCall PhaseChangeToBCS PhaseCompRemoteReceiver

 PhaseGetFaxMode PhaseRephase PhaseTransmittTCF

 PhaseDelay75msec PhaseCopyQualityOK PhaseTCFOk

 PhaseDisconnectLine PhaseSendFaxPage PhaseRephaseSender

 PhaseSendFaxPageToEnv PhaseFaxPageIgnore PhaseAltSpeech

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 131

Process phase Idle(28)

PageTries:=0

Idle

CallSetupCalled Station

PhaseGetFaxMode
(0,StoredDis,FaxCaps)

PhaseAnswerCall

CED via g

PhaseDelay75msec

PhaseSetModemToBCS

DIS
(StoredDis) VIA g

PhaseCopyDis_T
(StoredDis,DisData)

SET(now+T1Period,T1Timer)

SET(now+T4Period,T4Timer)

Timeouts:=0

PhaseB_R

CallFax
(NumPages,TlfNumber,
bIntrusion)

Calling Station

PhaseEstablishCall
(TlfNumber)

CallSetup
via k

CNG via g

PhaseDelay75msec

SET(now+T1Period,T1Timer)

PhaseB_T

InitFaxCaps
(FaxCaps)

PhaseSetFaxMode
(DisData,FaxCaps)

idle

R_ref

Appendix D

132 Restructuring SDL to improve readability

Process phase PhaseB_R1(28)

PhaseB_R
respons rec

DCN
(DisData)

reset(T4Timer)

RESET(T1Timer)

PhaseDisconnectLine

Idle

CRP
(DisData)

DIS (StoredDis)
VIA g

SET(NOW+T4Period,T4Timer)

PhaseB_R

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 133

Process phase PhaseB_R2(28)

PhaseB_R

DTC
(DisData)

CallingFAX wants me to be
transmitting FAX

RESET(T1Timer)

RESET(T4Timer)

PageTries:=PageTries+1

NumPages:=1

d_ref

Wait_CFR

DIS
(DisData)

CallingFAX wants me to be
transmitting FAX

PhaseCopyDis_T
(StoredDis,DisData)

RESET(T1Timer)

RESET(T4Timer)

PageTries:=PageTries+1

NumPages:=2

A_ref

DCS
(StoredDis)

RESET(T1Timer)

RESET(T4Timer)

'A timer ? '

PhaseReceiveTraining
(bResult)

PhaseChangeToBCS

bResult=true

CFR
(StoredDis) VIA g

SET(NOW+T2Period, T2Timer)

PhaseChangeToMSG

PhaseC_R

FTT
(DisData) VIA g

SET(NOW+T2Period, T2Timer)

PhaseB_R

true

false

Appendix D

134 Restructuring SDL to improve readability

Process phase PhaseB_R2part2(28)

PhaseB_R

T1Timer

DCN
(DisData) VIA g

PhaseDisconnectLine

RESET(T4Timer)

Idle

T4Timer

Timeouts:=Timeouts+1

Timeouts=3

LOOKs optional
//ETOFLI

DIS
(DisData) VIA g

set (Now + T4Period,T4Timer)

PhaseB_R

DCN
(DisData) VIA g

RESET(T4Timer)

RESET(T1Timer)

PhaseE

False

true

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 135

Process phase PhaseC_R(28)

PhaseC_R

FaxPage
(PageData)

RESET(T2Timer)

FaxPage
(PageData)
TO self

PhaseChangeToBCS

PhaseB_R

Appendix D

136 Restructuring SDL to improve readability

Process phase PhaseB_T1(28)

PhaseB_T

DIS
(DisData)

RESET(T1Timer)

PhaseCopyDis_T
(StoredDis,DisData)

RESET(T2Timer)

TCFTries:=0,
CompTries:=0,
PageTries:=0

/* Used to count
tries one a single page*/

A_ref

DTC
(DisData)

RESET(T1Timer)

PhaseCopyDis_T
(StoredDis,DisData)

RESET(T2Timer)

TCFTries:=0,
CompTries:=0,
PageTries:=0

/* Used to count
tries one a single page*/

A_ref

T1Timer

PhaseDisconnectLine

Idle

*

PhaseDisconnectLine

Idle

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 137

Process phase PhaseB_T1part2(28)

PhaseB_T

DCN
(DisData)

PhaseDisconnectLine

Idle

Appendix D

138 Restructuring SDL to improve readability

Process phase PhaseE(28)

PhaseE

*

Idle

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 139

Process phase PhaseB_R3(28)

PhaseB_R
/* D phase */

MPS
(DisData)

RESET(T4Timer)

PhaseCopyQualityOK
(bChoice)

bChoice

PhaseRephaseSender
(bChoice)

bChoice

PhaseSendFaxPageToEnv

MCF
(DisData) VIA g

PhaseChangeToMSG

PhaseC_R

This is not exatly according to the standard
State PhaseC_R does not really exist in the standard
Is done to show all phases in a fax call

RTP
(DisData) VIA g

PhaseFaxPageIgnore

PhaseB_R

RTN
(DisData) VIA g

PhaseFaxPageIgnore

PhaseB_R

*

PhaseDisconnectLine

Idle

true

false true

false

Appendix D

140 Restructuring SDL to improve readability

Process phase PhaseB_R3part2(28)

PhaseB_R

EOM
(DisData)

RESET(T4Timer)

PhaseCopyQualityOK
(bChoice)

bChoice

PhaseRephaseSender
(bChoice)

bChoice

PhaseSendFaxPageToEnv

MCF
(DisData) VIA g

PhaseChangeToMSG

PhaseB_R

PhaseFaxPageIgnore

RTP
(DisData) VIA g

PhaseB_R

PhaseFaxPageIgnore

RTN
(DisData) VIA g

PhaseB_R

true

false

true

false

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 141

Process phase PhaseB_R3part3(28)

PhaseB_R

EOP
(DisData)

RESET(T4Timer)

PhaseCopyQualityOK
(bChoice)

bChoice

PhaseRephaseSender
(bChoice)

bChoice

PhaseSendFaxPageToEnv

MCF
(DisData) VIA g

PhaseChangeToMSG

PhaseB_R

PhaseFaxPageIgnore

RTP
(DisData) VIA g

PhaseB_R

PhaseFaxPageIgnore

RTN
(DisData) VIA g

PhaseB_R

FaxPage

true

false

true

false

Appendix D

142 Restructuring SDL to improve readability

Process phase Wait_CFR_1(28)

Wait_CFR

CFR
(DisData)

RESET(T4Timer)

PhaseSendFaxPage

NumPages = 1

MPS
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_MultPage_T

ChangeMode

EOP
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

bIntrusion

PIP
(DISData)
VIA g

PhaseD_TPhaseD_T

EOM
(DisData) VIA g

The transmitting unit desires to
 exit from the transmitting
mode of operations and
 re-establish the capabillities.

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T

//ETOFLI
Usikker ?!!

false
true

false

true
false

true

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 143

Process phase Wait_CFR_1part2(28)

Wait_CFR

DIS
(DisData)

RESET(T4Timer)

CompTries=3

A_ref DCN
(DisData) VIA g

PhaseDisconnectLine

idle

The T.30 protocol
states that only
3 tries can be made
to find a compatible fax
transmission mode between
calling and called fax.

DTC
(DisData)

RESET(T4Timer)

CompTries=3

A_ref DCN
(DisData) VIA g

PhaseDisconnectLine

idle

The T.30 protocol
states that only
3 tries can be made
to find a compatible fax
transmission mode between
calling and called fax.

false

true

false

true

Appendix D

144 Restructuring SDL to improve readability

Process phase Wait_CFR_1part3(28)

Wait_CFR

DCN
(DisData)

PhaseDisconnectLine

Idle

FTT
(DisData)

RESET(T4Timer)

PhaseRephase
(bChoice)

bChoice

d_ref

Wait_CFR

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

true

false

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 145

Process phase Wait_CFR_1part4(28)

Wait_CFR

T4Timer

TCFTries=3

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

'Set mode'

DCS
(DisData) VIA g

PhaseTransmittTCF

SET(NOW + T4Period,T4Timer)

TCFTries:=TCFTries+1

Wait_CFR

CRP
(DisData)

//ETOFLI
This could solve DCS/CFR crash

'Set mode'

DCS
(DisData) VIA g

PhaseTransmittTCF

SET(NOW + T4Period,T4Timer)

TCFTries:=TCFTries+1

Wait_CFR

true

false

Appendix D

146 Restructuring SDL to improve readability

Process phase PhaseD_MultPage_T1(28)

PhaseD_MultPage_T

MCF
(DisData)

RESET(T4Timer)

NumPages:=NumPages-1

PhaseSendFaxPage

PhaseSetModemToBCS

NumPages = 1
last page has been sent

MPS
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_MultPage_T

ChangeMode=true

EOP
(DisData) VIA g

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T

EOM
(DisData) VIA g

The transmitting unit desires to
 exit from the transmitting
mode of operations and
 re-establish the capabillities.

timeouts:=0

SET(NOW + T4Period,T4Timer)

PhaseD_T

//ETOFLI
Usikker ?!!

RTN
(DisData)

RESET(T4Timer)

StoredDis!FifLit!BaudRateLit:=
GetLowerBr(StoredDis!FifLit!BaudRateLit)

/* try a lower baudrate */

d_ref

Wait_CFR

false
true

false

true

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 147

Process phase PhaseD_MultPage_T1part2(28)

PhaseD_MultPage_T

RTP
(DisData)

Question:
Do we resend page or not
Decision:
Resend previos page
with new capabillities

RESET(T4Timer)

StoredDis!FifLit!BaudRateLit:=
GetLowerBr(StoredDis!FifLit!BaudRateLit)

/* try a lower baudrate */

d_ref

Wait_CFR

*

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

T4Timer

PageTries:=PageTries+1

PageTries=3

'Set mode'

MPS
(DisData) VIA g

RESET(T4Timer)
/* //ETOFLI put this elsewhere */

Wait_CFR

NokFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

false
true

Appendix D

148 Restructuring SDL to improve readability

Process phase PhaseD_MultPage_T1part3(28)

PhaseD_MultPage_T

CRP
(DisData)

'Set mode'

MPS
(DisData) VIA g

RESET(T4Timer)
/* //ETOFLI put this elsewhere */

Wait_CFR

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 149

Process phase AllState(28)

*

PIN
(DISData)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

0

1

2

Appendix D

150 Restructuring SDL to improve readability

Process phase AllStatepart2(28)

PhaseD_MultPage_T

PIP
(DISData)

RESET(T4Timer)

RESET(T1Timer)

RESET(T2Timer) //etofli how to set
timers again ?

PhaseAltSpeech
(RetVal)

RetVal

PhaseDisconnectLine

idle- PhaseB_R

0

1

2

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 151

Process phase PhaseD_T1(28)

phaseD_T
Transmitting FAX in phase D

MCF
(DisData)

RESET(T4Timer)

OkFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

RTP
(DisData)

RESET(T4Timer)

NokFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

RTN
(DisData)

RESET(T4Timer)

CapableToReXmit = true

d_ref

Wait_CFR

NokFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

true
false

Appendix D

152 Restructuring SDL to improve readability

Process phase PhaseD_T1part2(28)

phaseD_T

*

RESET(T4Timer)

NokFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

T4Timer

Timeouts:=Timeouts+1

SET(NOW + T4Period,T4Timer)

Timeouts=3

EOP
(DisData) VIA g

phaseD_T

NokFax via a

DCN
(DisData) VIA g

PhaseDisconnectLine

idle

false

true

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 153

Process phase asterisk_state(28)

*

CNG

to let dump
people know this
is a fax call

-

CED

to let dump
people know this
is a fax call

-

Appendix D

154 Restructuring SDL to improve readability

Process phase state_phoneLine(28)

phoneLine

NoContinueFax

PhaseDisconnectLine

idle

SDL: Process Phase (Transformed)

Restructuring SDL to improve readability 155

Process phase connection_A_ref(28)

A_ref
This reference
i used when checking
copatible rec/trans fax

PhaseCompRemoteReceiver
(bChoice,StoredDis,FaxCaps)

CompTries:=CompTries+1

bChoice

NumPages >0

PhaseCompRemoteTransmitter
(fifData, bChoice)

bChoice

R_ref DCN
(DisData) VIA g

PhaseDisconnectLine

idle

d_ref

Wait_CFR

true

false

true

false

true

false

Appendix D

156 Restructuring SDL to improve readability

Procedure d_ref 1(1)

/* Comment moved by Transformer:
Transmitting FAX*/

'Set mode'

DCS
(StoredDis) VIA g

PhaseTransmittTCF

SET(NOW + T4Period,T4Timer)

TCFTries:=TCFTries+1

Restructuring SDL to improve readability 157

A P P E N D I X

E
APPENDIXASOURCE CODE: TRANSFORMER.PL

This appendix contains the source code to the program developed to implement and test
the rules from chapter 4. The source code is available in electronic form at
http://www.dahle.no/thesis .

#! /local/bin/perl -s
Transformer.pl version 0.45, 24.03.99
Written by Ole Dahle
Purpose: Rewrite SDL diagrams (in PR/CIF format) to make them more readable
Usage: perl transfomer.pl [-warn] [-insert] infile [outfile]

#Preferences:
$infile = ”phase3.sdl”;
$showWarnings = 0;
$insertComments = 0;
$removeInvisibleJoins = 1;

$flowsPerPage = 4; # Number of flows allowed on a page
$flowSpacing = 380; # Number of pixels between each flow
$pageWidth = 1900;
$pageHeight = 2650;

#Look for command line options
if($warn != 0) {$showWarnings = 0;}
if($insert != 0) {$insertComments = 0;}

$firstfile = 1;
foreach (@ARGV)
{ if(!(/^-/) && !$firstfile) {$outfile = $_;}

if(!(/^-/) && $firstfile) {$infile = $_; $firstfile = 0;}
}
if($outfile eq ””) {$outfile = ”fixed_$infile”;}

Appendix E

158 Restructuring SDL to improve readability

if($insertComments)
{$flowsPerPage = $flowsPerPage/2;
$flowSpacing = $flowSpacing *2;}

print ”$infile $outfile $showWarnings $insertComments space: $flowSpacing\n”;

#Global variables
@sdlfile; #Array that contains the SDL file
$i = $j = 0; #Counters
$x= $y = 0; #Position variables
$statePosX = 0; $statePosY = 0; # Position of state symbol

#Initialize: Open infile, read it into the sdlfile array.
print ”Transformer starting\n”;
open(INPUT,$infile) or die(“Could not open input file $infile.\n”);
print ”opening $infile\n”;
@sdlfile = <INPUT>;
close(INPUT);

#Perform transformations

if($insertComments)
{ &insertTextExtensions;

&makeSignalTextExtension;
}

if($removeInvisibleJoins)
{ &removeInvisibleJoins;}
&expandConnections;
&stateOnNewPage;
&alignPages;
&resolvePageOverflow;
&alignNextstates;
&removeEmptyPages;

if($showWarnings)
{ &warnShortNames;

&warnBranchOnDecision;
}

#Write transformed SDL to file

open(OUTPUT,”>$outfile”) or die(“Could not open output file $outfile.\n”);
print ”Writing to $outfile.\n”;
foreach $outline (@sdlfile)
{ print OUTPUT ”$outline”;
}
close(OUTPUT);

Source Code: transformer.pl

Restructuring SDL to improve readability 159

#End of program

#----------- Subroutines representing transformational rules below-----------#

sub expandConnections
{ local(@connections) = ();

local(@joins) = ();
local(%definition) = 0;
local($numberOfConnections) = 0;
local($invisibleJoins) = 0;
local(%used) = ();
local($currentState);

#Scan trough sdlfile, find all connections;
$i = 0;
while($i< @sdlfile)
{ if($sdlfile[$i] =~ /^join (\w+)/i) #Count occurences of join

{ #Lowercase connection name, works with norwegian characters:
$temp = $1; $temp =~ tr/A-ZÆØÅ/a-zæøå/;

#Count auto-generated, graphical connections separately
if($temp =~ /^grst\d+/)
{$invisibleJoins++;}
else
{$used{$temp}++;}

}
$i++;

}

@temp = %used;
$numberOf = @temp;
$numberOf = $numberOf/2;
print ”There are $numberOf connections and $invisibleJoins invisible joins used in the

file.\n”;

Treat each connection separately
foreach $con (reverse sort keys(%used))
{ print ”Connection $con was used $used{$con} times. Do you want to:\n”;

print ”Expand all occurences? (1)\n”;
print ”Expand selected occurences? (2)\n”;
print ”Turn it into a procedure? (3)\n”;
print ”Do nothing? (Any other key)\n”;
$answer = <>;
#print ”$answer \n”;

if($answer ==1 || $answer ==2 || $answer ==1)
{
#Rescan sdlfile, since joins-wihtin-joins may have been expanded, and
increased the number of joins.
$i = 0;
foreach $temp(keys (%used)) {$used{$temp} = 0;}

Appendix E

160 Restructuring SDL to improve readability

while($i< @sdlfile)
{if($sdlfile[$i] =~ /^join (\w+)/i) #Count occurences of join

{ #Lowercase connection name, works with norwegian characters:
$temp = $1; $temp =~ tr/A-ZÆØÅ/a-zæøå/;

#Skip auto-generated, graphical connections
if(!($temp =~ /^grst\d+/))
{$used{$temp}++;}

}
$i++;

}
}

--- Expand connection ---
if($answer == 1 || $answer == 2)
{ #Finding the definition of the connection

$i = 0;
until(($sdlfile[$i] =~ /^connection $con/i) || $i == @sdlfile)
{$i++};

if($i == @sdlfile)
{print ”Couldn’t find the definition of $con!\n”;}
else
{
$def = $i+2;
$i = 0;
$expandedJoins = 0;

#Enter do-it-all or selected-only mode
if($answer == 1) {$doit = 1;}
else {$doit = 0; }

while($i < @sdlfile)
{ # Keep track of wich state we’re in

if($sdlfile[$i] =~ /^state (.+)(;|\n)/i) {$currentState = $1;}

if($answer == 2 &&$sdlfile[$i] =~ /^join $con/i)
{ #Ask if in selected-only mode

print ”Found an occurence of $con in state $currentState.\n”;
print ”Expand it? (y/n) ”;
$expand = <>;
if($expand =~ /^y/i) {$doit = 1}

}

if($sdlfile[$i] =~ /^join $con/i && $doit)
{ $sdlfile[$i-1] =~ /^\/* CIF Join \((\d+),(\d+)\)/i;

#print ”$1 $2 $sdlfile[$i-1]”;
$x=$1; $y=$2;

print ”Replacing an occurence of join $con in state $currentState.\n”;
splice(@sdlfile,$i-1,2);

Source Code: transformer.pl

Restructuring SDL to improve readability 161

if($def > $i) {$def -= 2;}
#print ”Definition at $def, pointer at $i\n”;

$k = $def; $i--;
#Find the label, find the coordinates
$tmp = $k;
until($sdlfile[$tmp] =~ /\/* CIF/i && $sdlfile[$tmp] !~
/(Line|comment)/i)

 { # Lines and comments are not at the same coordinates as the flow
$tmp++;

}
$sdlfile[$tmp] =~ /\((\d+),(\d+)\)/;
#print ”$1,$2 $sdlfile[$tmp]”;
Calculating offset:
$x = $1+50 - $x; $y = $2 - $y;
#print ”Offset: x: $x y: $y\n”;

if($sdlfile[$k] =~ /^\/* CIF Line/i) {$k++;} # Skip first line

until($sdlfile[$k] =~ /^\/* CIF End Label/i)
 {

Treat comments to the connection label specially:
if(($sdlfile[$k-1] =~ /^connection/i) &&

($sdlfile[$k] =~ /\/* CIF Comment \((\d+),(\d+)/i))
{ #print ”Moving comment...\n”;
 $tempx = $1-$x; $tempy = $2-$y;

Create Textbox instead of comment
splice(@sdlfile,$i,0,”/* CIF Text ($tempx,$tempy),(300,400) */\n”);
$i++; $k++; if($def > $i) {$def++; $k++;}
splice(@sdlfile,$i,0,”/* Comment moved by Transformer:\n”);
$i++; if($def > $i) {$def++; $k++;}

Skip the line to the old comment
if($sdlfile[$k] =~ /\/* CIF Line/i) {$k++;}

Remove ”comment ’” from first line
splice(@sdlfile,$i,0,”$sdlfile[$k]”);
print ”Should be old comment: $sdlfile[$i]”;
$sdlfile[$i] =~ s/comment ’//i;
$i++; $k++; if($def > $i) {$def++; $k++;}

Put the rest of the comment in the box
until($sdlfile[$k] =~ /^(;|:)/)
’:’ is wrong, but used sometimes?
{ splice(@sdlfile,$i,0,”$sdlfile[$k]”);
#$sdlfile[$i] =~ s/\n/*\/\n/;
$i++; $k++; if($def > $i) {$def++; $k++;}
}

Insert text box end instead of ’;’

Appendix E

162 Restructuring SDL to improve readability

print ”$sdlfile[$k]”;
$sdlfile[$i-1] =~ s/’/*\//; print ”$sdlfile[$i-1]”;

splice(@sdlfile,$i,0,”/* CIF End Text */\n”);
$i++; $k++; if($def > $i) {$def++; $k++;}

}
else

{splice(@sdlfile,$i,0,$sdlfile[$k]);

In some CIF statements, only the first (x,y)
 # pair must be changed,

since the second (x,y) defines the size of the symbol.
if($sdlfile[$i] =~ /\/* CIF (Label|Join|Comment|Text) /i)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/e;
 # Substitute ’(x’ with x minus offset

$sdlfile[$i]=~ s/(\d+)\)/$1-$y/e;
 # Substitute ’y)’ with y minus offset

$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/;
 # Put the parantheses back in
}

elsif($sdlfile[$i] =~ /\/* CIF/)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/ge;
 # Substitute ’(x’ with x minus offset

$sdlfile[$i]=~ s/(\d+)\)/$1-$y/ge;
 # Substitute ’y)’ with y minus offset

$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/g;
 # Put the parantheses back in
}

#print ”$sdlfile[$i]”;
$i++; $k++; if($def > $i) {$def++; $k++;}

} #End comment /normal line
} #End inserting
if($answer ==2) {$doit = 0;}

 #Don’t expand next one without asking
$expandedJoins++;

} #End expanding occurence
 $i++;

}

#Deleting Connection definition
if($expandedJoins == $used{$con})

 #Only delete if all occurences were expanded
{
print ”Deleting definition of $con\n”;
$prevline = ””;
$i = 0;
until($sdlfile[$i] =~ /^connection $con/i)
{$i++};
$i--;
Start with the CIF label-statement above the connection statement

Source Code: transformer.pl

Restructuring SDL to improve readability 163

until($prevline =~ /^endconnection/i)
{ $prevline = $sdlfile[$i]; #print ”$prevline”;

splice(@sdlfile,$i,1);
}

} #End deleting definition

} #End found definiton

} #End expanding connection

--- Turn connection into procedure
if($answer == 3)

{ #Finding the definition of the connection
$i = 0;
until(($sdlfile[$i] =~ /^connection $con/i) || $i == @sdlfile)

{$i++};

if($i == @sdlfile)
{print ”Couldn’t find the definition of $con!\n”;}
else
{
$def = $i+1;

until(($sdlfile[$i] =~ /^endconnection $con/i) || $i == @sdlfile)
{ if($sdlfile[$i] =~ /^nextstate (\w+)/i)

{$returns++; $returnState = $1;}
$i++;

}

#@temp = %returns; $temp = @temp;
if($returns > 2)

{ print ”Connection $con has returns to more than one state!\n”; }
else

{ #Open a file to put the new procedure in
print ”Creating procedure $con in separate file...\n”;
$filename = ”$con.sdl”;
$overwrite = ”n”;
until(!(-e ”$filename”) || $overwrite =~ /^y/i)
{ print ”$filename exists. OK to overwrite? (y/n)\n”;

$overwrite = <>;
if($overwrite =~ /^n/i)
{ print ”Please supply a different name: ”;

$filename=<>;
chop($filename);

}
}

#Print the procedure to the file
open(PROCFILE, ”>$filename”) or die(“Failed to open $filename.\n”);

print PROCFILE ”/* CIF ProcedureDiagram */\n”;

Appendix E

164 Restructuring SDL to improve readability

print PROCFILE ”/* CIF Page 1 (1900,2300) */\n”;
print PROCFILE ”/* CIF Frame (0,0),(1900,2300) */\n”;
print PROCFILE ”/* CIF Specific SDT Version 1.0 */\n”;
print PROCFILE

”/* CIF Specific SDT Page 1 Scale 100 Grid (250,150) AutoNumbered */\n”;
print PROCFILE ”Procedure $con;\n”;
print PROCFILE ”/* CIF DefaultSize (200,100) */\n”;
print PROCFILE ”/* CIF CurrentPage 1 */\n”;
print PROCFILE ”/* CIF ProcedureStart (300,100) */\n”;
print PROCFILE ”start ;\n”;

Extract coordinates from label symbol, evaluate offset
$j = $def;
$sdlfile[$j-2] =~ /\/* CIF Label \((\d+),(\d+)\)/i;
#print ”$sdlfile[$j-2]”;
$x = $1-350;
$y = $2-100;
#print ”x: $x y: $y $sdlfile[$j-2]\n”;

Print the connection to the file,
 # alter all coordinates according to offset

until($sdlfile[$j] =~ /^\/* CIF End Label/i)
{

Treat comments to the connection label specially:
if(($sdlfile[$j-1] =~ /^connection/i) &&

($sdlfile[$j] =~ /\/* CIF Comment \((\d+),(\d+)/i))
 { print ”Moving comment...\n”;

 $tempx = $1-$x; $tempy = $2-$y;

Create Textbox instead of comment
print PROCFILE ”/* CIF Text ($tempx,$tempy),(300,400) */\n”; $j++;

print PROCFILE ”/* Comment moved by Transformer:\n”;

Skip the line to the old comment
 if($sdlfile[$j] =~ /\/* CIF Line/i) {$j++;}

Remove ”comment ’” from first line
print ”Should be old comment: $sdlfile[$i]”;

$sdlfile[$j] =~ s/comment ’//i;
$sdlfile[$j] =~ s/’\n/*\/\n/; # If it’s also the last
print PROCFILE ”$sdlfile[$j]”; $j++;

Put the rest of the comment in the box
until($sdlfile[$j] =~ /^(;|:)/)
’:’ is wrong, but used sometimes?
{ $sdlfile[$j] =~ s/’\n/*\/\n/;

print PROCFILE ”$sdlfile[$j]”;
$j++;

}

Source Code: transformer.pl

Restructuring SDL to improve readability 165

Insert text box end instead of ’;’
print ”$sdlfile[$j]”;
print PROCFILE ”/* CIF End Text */\n”;
$j++;

}

In a CIF label or Join statement, only the first (x,y)
pair must be changed,
since the second (x,y) defines the size of the symbol.
if($sdlfile[$j] =~ /\/* CIF (Label|Join|Comment|Text) /i)
{ $sdlfile[$j]=~ s/\((\d+)/$1-$x/e;

Substitute ’(x’ with x minus offset
$sdlfile[$j]=~ s/(\d+)\)/$1-$y/e;
Substitute ’y)’ with y minus offset
$sdlfile[$j]=~ s/(\d+),(\d+)/\($1,$2\)/;
Put the parantheses back in

}

elsif($sdlfile[$j] =~ /\/* CIF/)
{ $sdlfile[$j]=~ s/\((\d+)/$1-$x/ge;

Substitute ’(x’ with x minus offset
$sdlfile[$j]=~ s/(\d+)\)/$1-$y/ge;
Substitute ’y)’ with y minus offset
$sdlfile[$j]=~ s/(\d+),(\d+)/\($1,$2\)/g;
Put the parantheses back in

}

#Turn the nextStates into returns
if($sdlfile[$j] =~ /\/* CIF NextState \((\d+),(\d+)/i)
{ $x = $1+50; $y = $2;

$sdlfile[$j] = ”/* CIF Return($x,$y),(100,100) */\n”;
$sdlfile[$j+1] = ”return;\n”;

}
print PROCFILE ”$sdlfile[$j]”;
$j++;

}

#Print the last part of the procedure to the file.
print PROCFILE ”/* CIF End ProcedureDiagram */\n”;
print PROCFILE ”endprocedure $con;\n”;

close(PROCFILE);

#Insert reference to the procedure in the beginning of sdlfile
$i=0;
until($sdlfile[$i] =~ /^\/* CIF CurrentPage/i) {$i++;}
splice(@sdlfile,$i+1,0,”/* CIF Procedure (600,100) */\n”);
splice(@sdlfile,$i+2,0,”/* CIF TextPosition (625,125) */\n”);
splice(@sdlfile,$i+3,0,”procedure $con referenced;\n”);

#Search through sdlfile and replace all joins

Appendix E

166 Restructuring SDL to improve readability

 #to the connection with procedure calls
$i = 0;
while($i<@sdlfile)
{
if($sdlfile[$i] =~ /^join $con/i)
 { $sdlfile[$i-1] =~ /^\/* CIF Join \((\d+),(\d+)\)/i;

$x=$1-50; $y=$2;
#print ”Replacing an occurence of $sdlfile[$i]\n”;
$sdlfile[$i-1] = ”/* CIF ProcedureCall ($x,$y) */\n”;
$sdlfile[$i] = ”call $con;\n”;
$x = $x+100; $y = $y+100; $y2 = $y+50;
splice(@sdlfile,$i+1,0,”/* CIF Line ($x,$y),($x,$y2) */\n”);
$x = $x-100;
splice(@sdlfile,$i+2,0,”/* CIF NextState ($x,$y2) */\n”);
splice(@sdlfile,$i+3,0,”nextstate $returnState;\n”);

} #End replacing join
$i++;

} #End replacing all joins with calls

#Deleting Connection definition
print ”Deleting definition of $con\n”;
$prevline = ””;
$i = 0;
until($sdlfile[$i] =~ /^connection $con/i)
{$i++};
$i--;

 # Start with the Label CIF statement above the connection statement
until($prevline =~ /^endconnection/i)

{ $prevline = $sdlfile[$i]; #print ”$prevline”;
splice(@sdlfile,$i,1);

}

} #End only one return
} #End found definition

} #End turn into procedure

} # End Treating connections

}

sub stateOnNewPage
{ #Purpose: Insert pagebreaks before states and connection,
 #see rule ’state and nextstate’(1)

local($line) = ””;
local($statename) = ””;
local($notfound) = 1;
local($pagedeclare) = 0;

$lenght = @sdlfile;
$i = 0;

Find the place in the CIF file header where the pages are declared

Source Code: transformer.pl

Restructuring SDL to improve readability 167

while(($sdlfile[$i] =~ /(CIF ProcessDiagram)|(CIF Page)|(CIF Frame)/i))
{$i++;
}
$pagedeclare = $i-1;

Search trough sdlfile, looking for states and connections
while($i< @sdlfile)
{

if($sdlfile[$i] =~ /^(state|connection) (\w+|*)/i)
{

$statename = ”$1_$2”;
if($statename eq ”state_*”)
{ print ”Changed name on _*\n”;

$statename = ”asterisk_state”;
}
print ”checking $statename\n”;

Search backwards in sdlfile, to see if a pagebreak
 # has been declared since

last endstate or endconnection
$j = $i-1; $notfound = 1;
while(!($sdlfile[$j] =~ /^(endstate|endconnection)/) && $notfound)
{ if($sdlfile[$j] =~ /^\/* CIF CurrentPage/)

{ $notfound = 0; #print ”$statename HAS a pagebreak\n”;
}
else {$j--; #print ”.”;

}
}

if($notfound) # Insert code for pagebreak
{ splice(@sdlfile,$j+1,0,”/* CIF CurrentPage $statename */\n”);

$i++; $lenght++;

Insert declaration of the new page in the CIF header
splice(@sdlfile,$pagedeclare+1,0,
”/* CIF Page $statename ($pageWidth,$pageHeight) */\n”);
splice(@sdlfile,$pagedeclare+2,0,
”/* CIF Frame (0,0),($pageWidth,$pageHeight) */\n”);
$pagedeclare = $pagedeclare+2;
$i=$i+2;
#Skip two lines, since the declaration has moved everything downwards

print ”Inserted new page for $statename\n”;
} # End insert pagebreak

} # End backtracking

$i++;
} # End searching through sdlfile

}

Appendix E

168 Restructuring SDL to improve readability

sub alignPages
{ # Prupose: To make state symbols appear in the upper left corner

local($pageStart) = 0;

$i = 0;
print ”aligning pages\n”;

Search through sdlfile, check all pages
while($i < @sdlfile)
{ if(($sdlfile[$i] =~ /\/* CIF CurrentPage/i)

&& ($sdlfile[$i+1] =~ /\/* CIF (State|Label)/i))
 # Give up on the start page :-(

Page with state found
{ $i++;

$sdlfile[$i] =~ /\/* CIF (State|Label|Start) \((\d+),(\d+)\)/i;
Put the state symbol in the right place.
This might brake the lines to the symbol, this will be fixed by
resolvePageOverflow. Oops, there goes procedure independency...
if($1 =~ /label/i) {$x = 350;} else {$x = 300;}
if(($2 != $x) || ($3 != 100))

{ $sdlfile[$i]=~ s/\((\d+)/$x/e; # Substitute ’(x’ with the right x
$sdlfile[$i]=~ s/(\d+)\)/100/; # Substitute ’y)’ with 100
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/; #Put the parantheses back in

}
$pageStart = $i;
$i++;
#print ”$sdlfile[$i]\n”;
Extract coordinates for the first symbol, evaluate offset
until($sdlfile[$i] =~ /^\/* CIF/i && ($sdlfile[$i] !~ /(Line|Comment)/i))

{$i++;}
$sdlfile[$i] =~ /^\/* CIF \w+ \((\d+),(\d+)\)/i;
$x = $1-300;
$y = $2-250;
print ”line: $i x: $x y: $y $sdlfile[$i]”;

Search through the page, alter all coordinates according to offset
$i = $pageStart+1; # Jump back up to the line after state statement
until($sdlfile[$i] =~ /^(endstate|endconnection)/i)
{

In some CIF statements, only the first (x,y) pair must be changed,
since the second (x,y) defines the size of the symbol.
if($sdlfile[$i] =~ /\/* CIF (Label|Join|Comment|Text)/i)
{

$sdlfile[$i]=~ s/\((\d+)/$1-$x/e;
Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+)\)/$1-$y/e;
Substitute ’y)’ with y minus offset
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/;
Put the parantheses back in
#print ”Replaced only 1st x,y on line $i: $sdlfile[$i]”;

Source Code: transformer.pl

Restructuring SDL to improve readability 169

}

elsif($sdlfile[$i] =~ /\/* CIF/)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/ge;

Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+)\)/$1-$y/ge;
Substitute ’y)’ with y minus offset
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/g;
Put the parantheses back in

}
$i++;

} # End aligning symbols

Adjust nextstates upwards if they are far below the previous symbol
$i = $pageStart;

until($sdlfile[$i] =~ /^(endstate|endconnection)/i)
{

if($sdlfile[$i] =~ /^\/* CIF NextState/i)
{ #Search upwards to find the line to the nextstate

$rightline = $i-1;
until($sdlfile[$rightline] =~ /\/* CIF Line/i)
{$rightline--; }

$sdlfile[$rightline] =~ /\/* CIF Line \(\d+,(\d+)\),\(\d+,(\d+)\) *\//;
#Extract the two y-coordinates for the line
#print ”$sdlfile[$rightline]”;
#print ”y1: $1 y2: $2\n”;
if($2-$1 != 50)
{ $newY = $1+50;

$sdlfile[$rightline]=~ s/(\d+)\) *\//$newY\) *\//;
 #Adjust the second y-coordinate

$sdlfile[$i]=~ s/(\d+)\) *\//$newY\) *\//;
}#End moving misplaced nextstate

} #End checking nextstate
$i++;

} #End checking page for misplaced nextstates

} # End found page
$i++;

} # End searching through sdlfile
}

sub alignNextstates
{ #Purpose: Align nextstates on each page horizontally,
 #see rule ’state and nextstate’(2)

local(@statelines) = ();
local($nextstates) = 0;
local($largestY) = 0;

Appendix E

170 Restructuring SDL to improve readability

local($line) = ””;
local($currentState) = ”start”;

$i = 0;
$lenght = @sdlfile;

print ”Aligning nextstates\n”;

while($i < @sdlfile)
{ @statelines = ();

$nextstates = 0;

For each page put the linenumbers of nextstate symbols in @statelines,
until($sdlfile[$i] =~ /^(\/* CIF CurrentPage|endprocess|endprocedure)/i)
{ if(($sdlfile[$i] =~ /^nextstate/) && ($currentState ne ”start”))

{ # Don’t move the nextstate in the start transition
#print”$sdlfile[$i-1]”;
#print”$sdlfile[$i]\n”;
$statelines[$nextstates] = $i;
$nextstates++;

}

Keep track of wich state we’re in
if($sdlfile[$i] =~ /^state (.+);/i)
{$currentState = $1;
}

$i++;
}

Compare the y-coordinates and put the largest in $largestY
$largestY = 0;

foreach $line (@statelines)
{ #print ”find Y: $sdlfile[$line-1]\n”;

$sdlfile[$line-1] =~ /(\d+)\) *\//;
if($1 > $largestY) {$largestY = $1;}

}
print ”y: $largestY\n”;

Substitute the y-coordinate for the nextstate symbols and the line
to them with $largestY
foreach $line (@statelines)
{ $sdlfile[$line-1] =~ s/(\d+)\) *\/$/$largestY\) *\//;

#Search upwards to find the line to the nextstate
$rightline = $line-2;
until($sdlfile[$rightline] =~ /\/* CIF Line/i)
{$rightline--; }
$sdlfile[$rightline] =~ s/(\d+)\) *\/$/$largestY\) *\//;

Source Code: transformer.pl

Restructuring SDL to improve readability 171

#print”$sdlfile[$rightline]”;
#print”$sdlfile[$line-1]\n”;

}
$i++; #Go past the pagebreak and into the next page

} #end searching through sdlfile
}

sub makeSignalTextExtension
{ # Purpose: Put the parameters to a signal in a text extension if necessary,

see rule ’signal parameters’
$i = 0;
local($parameters) = 0;
local($signalLine) = 0;
local($CIFstring) = ””;
local($extFound) = 0;
local($signalname) = ””;

print ”Checking signals for necessary text extentions\n”;
while($i < @sdlfile)
{

If the signal has parameters, start checking it
if($sdlfile[$i] =~ /^(output|input) (\w+)/i && !($sdlfile[$i] =~ /;/))
{ $signalname = $2;

$parameters = 0; $extFound = 0;
$signalLine = $i;

Count the parameters, every line beginning with a letter,
except ’comment’
until(($sdlfile[$i] =~ /(;|^\/* CIF Comment)/i) || ($extFound == 1))
{ if($sdlfile[$i] =~ /^\(?\w+/ && !($sdlfile[$i] =~ /^comment/))

{ $parameters++;}

if($sdlfile[$i] =~ /CIF TextExtension/i)
 { $extFound = 1; print ”$signalname HAS text extention\n”;

}
 $i++;

}

if($parameter s > 2 && ($extFound == 0))
{ print ”Added extension to signal $signalname\n”;

Extract the coordinates of the signal symbol
$sdlfile[$signalLine-1] =~ /\/* CIF .+put \((\d+),(\d+)\)/;
$x = $1; $y = $2;

Insert CIF code for a text extension and
 # line rigt after the signal statement

 $CIFstring = sprintf(“/* CIF TextExtension (%d,%d)
 Right */\n”,$x+250,$y);

splice(@sdlfile,$signalLine+1,0,$CIFstring);
 $CIFstring = sprintf(“/* CIF Line (%d,%d),
 (%d,%d) */\n”,$x+250,$y+50,$x+200,$y+50);

Appendix E

172 Restructuring SDL to improve readability

splice(@sdlfile,$signalLine+2,0,$CIFstring);

Insert CIF code to end the text extension right before the semicolon
splice(@sdlfile,$i+2,0,”/* CIF End TextExtension */\n”);

$i+2, since two lines have been inserted
$i=$i+3;

} # End make text extension

} # End check signal statement
$i++;

} # End search through sdlfile

}

sub removeInvisibleJoins
{ # Purpose: Expand all invisible joins, remove the invisble labels.

See rule ’connections’

local($joinName) = ””;
local($notFound) = 1;

Search trough sdlfile, expand all invisible joins
print ”Expanding invisible joins.\n”;
$i = 0;
while($i< @sdlfile)
{ if($sdlfile[$i] =~ /^\/* CIF Join Invisible/i)

{ $sdlfile[$i+1] =~ /join (\w+);/i;
$joinName = $1;
#print ”Found invisible join $joinName at line ”,$i+1,”.\n”;

Find the coordinates of the join
if($sdlfile[$i-1] =~ /^\/* CIF Line \((\d+),(\d+)/)

{$joinLine = $i-1; $x = $1-100; $y =$2+50;
 print ”x: $x y:$y $sdlfile[$joinLine]”;
 }

elsif($sdlfile[$i+2] =~ /^\/* CIF Line \((\d+),(\d+)/)
{$joinLine = $i+2; $x = $1-100; $y =$2+50;

 print ”x: $x y:$y $sdlfile[$joinLine]”;
 }

else {print ”Couldn’t find coordinates!\n”; }

Search for the definition of the connection
$j= 0; $notFound = 1;
while(($j < @sdlfile) && $notFound)
{ if(($sdlfile[$j] =~ /^$joinName/i) &&

 ($sdlfile[$j-1] =~ /^\/* CIF Label Invisible/i))
{$notFound = 0; print ”Found $sdlfile[$j]”;}

else {$j++;}
} # End finding definition
#print ”Definition at line $j: $sdlfile[$j]”;

Source Code: transformer.pl

Restructuring SDL to improve readability 173

Remove the join
#print ”deleting: $sdlfile[$i]”;
splice(@sdlfile,$i,1);
#print ”deleting: $sdlfile[$i]”;
splice(@sdlfile,$i,1);
Make the line to the expanded symbols
$orgY = $y-50; $tmp = $x+100;
$sdlfile[$joinLine] = ”/* CIF Line ($tmp,$orgY),($tmp,$y) */\n”;

Find the coordinates of the first symbol after
 # the invisible join, evaluate offset

$sdlfile[$j+1] =~ /\((\d+),(\d+)\) *\/$/;
$x = $1 - $x; $y = $2 - $y; print ”offset: $x, $y\n”;

Expand the connection
$j++; print ”Expanding $joinName:\n”;
until($sdlfile[$j+1] =~ /^\/* CIF Input/i ||

 $sdlfile[$j-1] =~ /^(endstate|endconnection)/i)
{ splice(@sdlfile,$i,0,$sdlfile[$j]);

if($j>$i) {$j++;}

#Correct the coordiantes in the inserted line
In a CIF label or Join statement,

 # only the first (x,y) pair must be changed,
since the second (x,y) defines the size of the symbol.

if($sdlfile[$i] =~ /\/* CIF (Label|Join|Comment|Text) /i)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/e;

 # Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+)\)/$1-$y/e;

 # Substitute ’y)’ with y minus offset
 $sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/;

 # Put the parantheses back in
}

elsif($sdlfile[$i] =~ /\/* CIF/)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/ge;

 # Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+)\)/$1-$y/ge;

 # Substitute ’y)’ with y minus offset
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2\)/g;

 # Put the parantheses back in
}

#print ”$sdlfile[$i]”;
$i++; $j++;

} # End expanding connection

} # End found invisible join
$i++;
} # End expanding invisible joins

#Search trough sdlfile, remove all invisible labels

Appendix E

174 Restructuring SDL to improve readability

$i = 0;
while($i< @sdlfile)
{ if ($sdlfile[$i] =~ /^\/* CIF Label Invisible/i)

{ print ”Removing label $sdlfile[$i+1]”;
splice(@sdlfile,$i,1);
splice(@sdlfile,$i,1);

}

$i++;
} # End deleting labels

} # End sub

sub insertTextExtensions
{ # Purpose: Warn of missing TO/FROM statements/comments,
 # insert dummy comments in the SDL,

see rule ’source and destination’

$i = 0;
local($found) = 0;
local($commentString) = ””;
local($signalname) = ””;
local($direction) = ””;

print ”Checking TO/FROM-statements on signals\n”;
while($i< @sdlfile)
{ $sdlfile[$i]; $i++;

If a signal statement is found, extract the signal name and coordinates
if($sdlfile[$i] =~ /^\/* CIF (in|out)put \((\d+),(\d+)\)/i)
{ $direction = $1; $x = $2; $y = $3;

#print ”dir: $direction\n”;
$sdlfile[$i+1] =~ /put (\w+)/;
$signalname = $1;
$found = 0;

Check if the signal has a TO/FROM-statement or comment
until(($sdlfile[$i] =~ /;$/) || $found)
{ $i++;

if($sdlfile[$i] =~ /^(comment ’(TO|FROM)|TO|VIA)/i)
{$found = 1;}

}

If the signal has no TO/FROM statement/comment, insert a comment
if(!($found))
{

if($sdlfile[$i] =~ /^$directionput/)
If the semicolon is on the same line as the signal name

{ $sdlfile[$i] =~ s/;//;

Source Code: transformer.pl

Restructuring SDL to improve readability 175

$i++;
splice(@sdlfile,$i,0,”;\n”); # Put the semicolon on the next line

}

if($direction =~ /in/i)
{ $direction = ”FROM”;}
else {$direction = ”TO”;}

Insert the CIF code for the comment symbol, a line and the text
 $commentString =
 sprintf(“/* CIF Comment (%d,%d) Right */\n”,$x+250,$y);

splice(@sdlfile,$i,0,$commentString);
 $commentString =
 sprintf(“/* CIF Line (%d,%d), (%d,%d) Dashed */\n”,$x+250,$y,$x+200,$y);

splice(@sdlfile,$i+1,0,$commentString);
$commentString = ”comment ’$direction: ?’\n”;
splice(@sdlfile,$i+2,0,$commentString);

print ”Warning: signal $signalname has no $direction-statement\n”;
#print ”Added dummy $direction-statement to $signalname\n”;

} # End insert comment
} # End searching through signal statement

} # End searching through sdlfile
}

sub warnBranchOnDecision
{ # Purpose: Warn on decisions in the SDL, see rule ’control flow’

$i = 0;
local($currentState);

while($i< @sdlfile)
{ $line = $sdlfile[$i]; $i++;

Keep track of wich state we’re in
if($line =~ /^state (.+);/i)
{$currentState = $1;
}

if($line =~ /decision (.+);/i)
{ print ”Warning: in state $currentState,

 the process branches on decision: $1\n”;
}

}
}

sub warnShortNames
{ # Purpose: Warn on short names in the SDL, see rule ’meaningful names’

Appendix E

176 Restructuring SDL to improve readability

$i = 0;

while($i< @sdlfile)
{ $line = $sdlfile[$i]; $i++;

if($line =~ /(DCL|SIGNAL) (\w+)/i)
{ $name=$2; $len = length($2);

if($len < 5)
{ if($1 eq ”DCL”) { print ”Warning: variable $name has a short name\n”;}

if($1 eq ”SIGNAL”)
 { print ”Warning: signal $name has a short name\n”;}

}
} # End check declaration

} # End search through sdlfile
}

sub resolvePageOverflow
{ # Purpose: Make sure there is enogh horizontal space on each page, if not

create new pages.

local($stateName) = ””;
local($pageName) = ””;
local($rightX) = 0;
local($newPages) = 0;
local($flowsUsed) = 0;
local($startTransition) = 0;
local($spaceNeeded) = 0;
local($isState) = 1;
local($lastName) = ””;

print ”Checking horizontal spacing.\n”;
$i = 0;

while($i< @sdlfile)
{ if($sdlfile[$i] =~ /^\/* CIF CurrentPage (\w+)/i)

{ $pageName = $1; $lastName = $pageName;

until($sdlfile[$i] =~ /^\/* CIF (State|Label)/i)
{$i++;}

if($sdlfile[$i] =~ /^\/* CIF (State|Label) \((\d+),(\d+)/i)
{if($1 eq ”State”){$isState = 1;

 $statePosX = $2+100; $statePosY = $3+100;}
if($1 eq ”Label”){$isState = 0; $statePosX = $2; $statePosY = $3+100;}

}

if($sdlfile[$i+1] =~ /^(state|connection) (\w+)/i)
{$stateName = $2;}

$flowsUsed = 0;
$newPages = 1;
$i++;

Source Code: transformer.pl

Restructuring SDL to improve readability 177

while($sdlfile[$i] !~ /^\/* CIF CurrentPage/i && $i < @sdlfile)
{

if($sdlfile[$i] =~ /^(nextstate|join)/)
{ # Check that it’s not the start transition

 $j = $i; $startTransition = 0;
while(($sdlfile[$j] !~ /^(state|connection)/i) && !$startTransition)

 { if($sdlfile[$j] =~ /^start/i)
 {$startTransition = 1; #print ”Is in start Transition?\n”;

}
$j--;

} # End check for start transition
if(!$startTransition)

{$flowsUsed++;}
}

if($sdlfile[$i] =~ /^(input|save)/i)
{ $spaceNeeded = 0;

if($sdlfile[$i-1] =~ /^\/* CIF (Input|Save) \((\d+),(\d+)/)
{

$symbolX = $2; $symbolY = $3; print ”$symbolX $symbolY $sdlfile[$i]”;
if($1 =~ /save/i) {$spaceNeeded++;}

}
else {print ”Couldn’t find symbolX in line ”,$i-1,”: $sdlfile[$i-1]”;}

Check space needed by the flowline
$j = $i+1;
while($sdlfile[$j] !~ /^(input|endstate|endconnection|save)/i)
{ if($sdlfile[$j] =~ /^(nextstate|join)/i) {$spaceNeeded++;}

$j++;
}

print ”Space: $spaceNeeded used: $flowsUsed\n”;
if($spaceNeeded+$flowsUsed> $flowsPerPage)
{ # Create new page

$newPages++; $flowsUsed = 0;
print ”Created new page $pageName\part$newPages\n”;
if($isState)
{ splice(@sdlfile,$i-2,0,”/* CIF End State */\n”);

$i++;
 splice(@sdlfile,$i-2,0,”endstate;\n”);

$i++;
splice(@sdlfile,$i-2,0,”/* CIF CurrentPage $pageName\part$newPages */\n”);

$i++;
splice(@sdlfile,$i-2,0,”/* CIF State (300,100) */\n”);
$i++;
splice(@sdlfile,$i-2,0,”state $stateName;\n”);
$i++;

}
else

{ splice(@sdlfile,$i-2,0,”/* CIF End Label */\n”);
$i++;

Appendix E

178 Restructuring SDL to improve readability

splice(@sdlfile,$i-2,0,”endconnection;\n”);
$i++;

splice(@sdlfile,$i-2,0,”/* CIF CurrentPage $pageName\part$newPages */\n”);
$i++;

splice(@sdlfile,$i-2,0,”/* CIF Label (350,100) (100,100) */\n”);
$i++;
splice(@sdlfile,$i-2,0,”connection $stateName;\n”);
$i++;

}

#$i++;
$statePosX = 400; $statePosY = 200;

Find the place in the CIF file header where the pages are declared
$pagedeclare = 0;
while(($sdlfile[$pagedeclare] !~ /CIF Page $lastName/i))
{$pagedeclare++;
}

Insert declaration of the new page in the CIF header
splice(@sdlfile,$pagedeclare+2,0,

 ”/* CIF Page $pageName\part$newPages ($pageWidth,$pageHeight) */\n”);
splice(@sdlfile,$pagedeclare+3,0,

 ”/* CIF Frame (0,0),($pageWidth,$pageHeight) */\n”);
$pagedeclare = $pagedeclare+2;
$i=$i+2;

 #Skip two lines, since the declaration has moved everything downwards
$lastName = ”$pageName\part$newPages”;

}

#Check horizontal alignment
$rightX = $flowsUsed * $flowSpacing + 300; print ”RightX: $rightX\n”;
if($rightX != $symbolX)
{ # Move the flowline to the right x-coordinate

#Check the line from the state symbol to the input symbol
if($sdlfile[$i-2] =~ /CIF Line \((\d+),(\d+)/i)

{ unless($1 == $statePosX && $2 == statePosY)
{$tmp = sprintf(“/* CIF Line (%d,%d),(%d,%d),(%d,%d),(%d,%d) */\n”,

 $statePosX,$statePosY,$statePosX,$statePosY+25,$rightX+100,
 $statePosY+25,$rightX+100,$symbolY);

splice(@sdlfile,$i-2,1,$tmp); #print ”$tmp”;
}
#print ”$1 $2”;

}
else {print ”Couldn’t find line to symbol in $sdlfile[$i-2]”;}

Evaluate offset
$x = $symbolX- $rightX;
print ”Moving a flowline in $stateName $x pixels to the left\n”;
print ”at line $i : $sdlfile[$i]”;
$i--; # Step one line up to start with the CIF signal

Source Code: transformer.pl

Restructuring SDL to improve readability 179

$startDecide = $i; $flowsDecide = $flowsUsed;
while($sdlfile[$i+1] !~ /^\/* CIF (Input|Save)/i &&

 $sdlfile[$i] !~ /^(endstate|endconnection)/i)
{

#Correct the x-coordiantes in the flowline
In a CIF label or Join statement, only the first x must be changed,
since the second x defines the size of the symbol.
if($sdlfile[$i] =~ /\/* CIF (Label|Join|Comment|Text) /i)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/e;

 # Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2/;

 # Put the parantheses back in
}

elsif($sdlfile[$i] =~ /\/* CIF/)
{ $sdlfile[$i]=~ s/\((\d+)/$1-$x/ge;

 # Substitute ’(x’ with x minus offset
$sdlfile[$i]=~ s/(\d+),(\d+)/\($1,$2/g;

 # Put the parantheses back in
}

if($sdlfile[$i] =~ /^(nextstate|join)/) {$flowsUsed++;}
$i++;
} # End adjusting x-coordinates

} # End fix alignment
} # End check input signal

if($spaceNeeded > 1)
{ # Check spacing inside decisions

$j = $startDecide;
while($sdlfile[$j+1] !~ /^\/* CIF (Input|Save)/i &&

 ($sdlfile[$j+1] !~ /(endstate|endconnection)/i) && $j < @sdlfile)
{

if($sdlfile[$j] =~ /^(join|nextstate)/i &&
($sdlfile[$j+1] =~ /CIF Answer/i) &&
($sdlfile[$j+2] =~ /\((\d+),(\d+)\) *\//))

{
$flowsDecide++;

 $x = $1 -100;
print ”Inside ! x = $x, flows = $flowsDecide, $sdlfile[$j+2]”;
#Check horizontal alignment
$rightX = $flowsDecide * $flowSpacing + 300;

 #print ”RightX: $rightX\n”;
if($x != $rightX)
{ # Evaluate offset

$x = $x - $rightX;
print ”Moving a flowline Inside a decision in

 $stateName $x pixels to the left\n”;
print ”at line $j : $sdlfile[$j]”;

while($sdlfile[$j+1] !~ /^(join|nextstate)/i)
{

Appendix E

180 Restructuring SDL to improve readability

#Correct the x-coordiantes in the flowline
In a CIF label or Join statement, only the first x must be changed,
since the second x defines the size of the symbol.
if($sdlfile[$j] =~ /\/* CIF (Label|Join|Comment|Text) /i)
{ $sdlfile[$j]=~ s/\((\d+)/$1-$x/e;

 # Substitute ’(x’ with x minus offset
$sdlfile[$j]=~ s/(\d+),(\d+)/\($1,$2/;

 # Put the parantheses back in
}

elsif($sdlfile[$j] =~ /\/* CIF/)
{ $sdlfile[$j]=~ s/\((\d+)/$1-$x/ge;

 # Substitute ’(x’ with x minus offset
$sdlfile[$j]=~ s/(\d+),(\d+)/\($1,$2/g;

 # Put the parantheses back in
}

$j++;
} # End adjusting x-coordinates

} # End x != rightX
} # End found a nextstate/join

$j++;
} # End searching the flowline

} # End checking inside decisions

$i++;
} # End search through page

} # End check page
else {$i++;}

} # End search through sdlfile
} # End procedure

sub removeEmptyPages
{ # Purpose: Remove pages that have become empty after deletion of connections

$i = 0;

while($i < @sdlfile)
{ if($sdlfile[$i+1] =~ /^\/* CIF currentPage/i &&

$sdlfile[$i] =~ /^\/* CIF currentPage (\w+)/i)
{ # Delete the pagebreak

$pageName = $1;
print ”At line: $i Deleting pagebreak $pageName\n”;
splice(@sdlfile,$i,1);

}
$i++;

} # End removing unnecessary pagebreaks

Check if the declared pages are in fact used
$i = 2;

while($sdlfile[$i] =~ /^\/* CIF (Frame|Page)/i)

Source Code: transformer.pl

Restructuring SDL to improve readability 181

{ if($sdlfile[$i] =~ /^\/* CIF Page (\w+)/i)
{ $pageName = $1; #print ”Checking page $pageName\n”;

$inUse = 0;
$j = $i;

while(($j < @sdlfile) && ($inUse == 0))
{ if($sdlfile[$j] =~ /^\/* CIF currentPage $pageName/i)

 {$inUse = 1;}
$j++;

}

If not in use, Delete the declaration
if($inUse == 0)
{ splice(@sdlfile,$i,1);

splice(@sdlfile,$i,1);
print ”Deleted declaration of page $pageName\n”;

}

} # End chech declaration
$i++;

} # End removing unused declarations
}

Appendix E

182 Restructuring SDL to improve readability

